Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Occurrence and ecological risk assessment of 2,2′,4,4′-tetrabromodiphenyl ether and decabromodiphenyl ether in surface waters across China

      , , , , , , ,
      Chemosphere

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data.

          The evaluation of the quality of data and their use in hazard and risk assessment as a systematic approach is described. Definitions are proposed for reliability, relevance, and adequacy of data. Reliability is differentiated into four categories. Criteria relating to international testing standards for categorizing reliability are developed. A systematic documentation of evaluating reliability especially for use in the IUCLID database is proposed. This approach is intended to harmonize data evaluation processes worldwide. It may help the expert in subsequent assessments and should increase the clarity of evaluation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide.

            Due to their toxicity and persistence, several families of brominated flame retardants (BFRs) have been listed as persistent organic pollutants (POPs) in the Stockholm Convention, a multilateral treaty overseen by the United Nations Environment Programme. This treaty mandates that parties who have signed must take administrative and legislative actions to prevent the environmental impacts that POPs pose, both within their jurisdictions and in the global environment. The specific BFRs listed in the Stockholm Convention are Polybrominated Diphenyl Ethers (PBDEs), Hexabromocyclododecane (HBCDD), and Hexabromobiphenyl (HBB), chemicals which must therefore be heavily restricted within the jurisdictions of the signatories. As an example, within the EU, hexabromobiphenyl (HBB), the PBDE commercial mixtures, and HBCDD are almost entirely prohibited in terms of both production and use in commercial goods. Waste articles containing excess concentrations of these BFRs are similarly restricted and must be disposed of in a manner that destroys or irreversible transforms the BFR in question. In some cases, specific exemptions for these limits are defined by the Convention for certain parties: for example, Penta- and Octa-BDE can be present in waste materials for recycling until 2030, while Deca-BDE can be applied to some aviation and automotive applications until 2036. However, in such cases, very specific criteria and guidelines apply for their use and/or production. Worldwide, China, Japan, India, and the United States of America have made significant advances in the regulation of POPs, in line with the provisions of the Stockholm Convention. China has established concentration limits for Penta- and Octa-BDEs in electronic goods. It is also currently availing of an exemption to allow for the use of HBCDD and has not yet ratified the Convention with regards to Deca-BDE. Japan meanwhile has classified HBB and Penta-/Octa-BDE compounds as Class I Specified Chemical Substances which virtually prohibits the manufacture, import, and use of these chemicals in all applications. India has banned the manufacture, trade, import, and use of HBB, HBCDD and some PBDEs, and has established concentration limits for all PBDEs in certain electrical goods. Finally, the United States has no federal mandate for the restriction of POPs and has not ratified the annexes to the Convention requiring them to do so. However, thirteen states have implemented their own state-wide concentration limits on a variety of flame retarding chemicals in various commercial applications. Though these limits worldwide are a very positive step for the removal of POP-BFRs from the environment, the increased use of replacement flame retardants renders such legislation only partially effective. The lack of effective screening mechanisms in waste management facilities means that BFR-treated plastics can be inadvertently recycled and remain in circulation. The rise in the use of novel BFRs (NBFRs) can furthermore hinder screening methods currently being developed and the additives themselves may pose similar issues to their predecessors owing to their similar chemical properties. Thus, restrictions on current BFRs will result in the use of new flame retardants, which may in turn be banned and replaced once again. Further research into and development of methods to screen for hazardous chemicals in end of life materials is therefore of the utmost importance. This must be coupled with pro-active legislation that eliminates the need for using such persistent and potentially harmful chemicals in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stocks and flows of PBDEs in products from use to waste in the U.S. and Canada from 1970 to 2020.

              The time-dependent stock of PBDEs contained in in-use products (excluding building materials and large vehicles) was estimated for the U.S. and Canada from 1970 to 2020 based on product consumption patterns, PBDE contents, and product lifespan. The stocks of penta- and octaBDE peaked in in-use products at 17,000 (95% confidence interval: 6000-70,000) and 4,000 (1,000-50,000) tonnes in 2004, respectively, and for decaBDE at 140,000 (40,000-300,000) tonnes in 2008. Products dominating PBDE usage were polyurethane foam used in furniture (65% of pentaBDE), casings of electrical and electronic equipment or EEE (80% of octaBDE), and EEE and automotive seating (35% of decaBDE for each category). The largest flow of PBDEs in products, excluding automotive sector, to the waste phase occurred between 2005 and 2008 at ∼10,000 tonnes per year. Total consumption of penta-, octa-, and decaBDE from 1970 to 2020 in products considered was estimated at ∼46,000, ∼25,000, and ∼380,000 tonnes, respectively. Per capita usage was estimated at 10-250, 10-150, and 200-2000 g·capita(-1)·y(-1) for penta-, octa-, and decaBDE, respectively, over the time span. Considering only the first use (no reuse and/or storage) of PBDE-containing products, approximately 60% of the stock of PBDEs in 2014 or ∼70,000 tonnes, of which 95% is decaBDE, will remain in the use phase in 2020. Total emissions to air of all PBDEs from the in-use product stock was estimated at 70-700 tonnes between 1970 and 2020, with annual emissions of 0.4-4 tonnes·y(-1) for each of penta- and octaBDE and 0.35-3.5 tonnes·y(-1) for decaBDE in 2014.
                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                00456535
                January 2023
                January 2023
                : 312
                : 137215
                Article
                10.1016/j.chemosphere.2022.137215
                36375608
                badca798-c3a3-4697-945e-daa92ce8e6cf
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,442

                Cited by3

                Most referenced authors567