53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metalloproteinase-mediated cleavage of EphA2 induces breast tumor cells to shift from collective invasion to single-cell invasion.

          Abstract

          Changes in EphA2 signaling can affect cancer cell–cell communication and motility through effects on actomyosin contractility. However, the underlying cell–surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell–surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1. This cleavage, coupled with EphA2-dependent Src activation, triggered intracellular EphA2 translocation, as well as an increase in RhoA activity and cell junction disassembly, which suggests an overall repulsive effect between cells. Consistent with this, cleavage-prone EphA2-D359I mutant shifted breast carcinoma cell invasion from collective to rounded single-cell invasion within collagen and in vivo. Up-regulated MT1-MMP also codistributed with intracellular EphA2 in invasive cells within human breast carcinomas. These results reveal a new proteolytic regulatory mechanism of cell–cell signaling in cancer invasion.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plasticity of cell migration: a multiscale tuning model

          Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or collectively. Using a multiparameter tuning model, we describe how dimension, density, stiffness, and orientation of the extracellular matrix together with cell determinants—including cell–cell and cell–matrix adhesion, cytoskeletal polarity and stiffness, and pericellular proteolysis—interdependently control migration mode and efficiency. Motile cells integrate variable inputs to adjust interactions among themselves and with the matrix to dictate the migration mode. The tuning model provides a matrix of parameters that control cell movement as an adaptive and interconvertible process with relevance to different physiological and pathological contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eph receptor signalling casts a wide net on cell behaviour.

            Eph receptor tyrosine kinases mould the behaviour of many cell types by binding membrane-anchored ligands, ephrins, at sites of cell-cell contact. Eph signals affect both of the contacting cells and can produce diverse biological responses. New models explain how quantitative variations in the densities and signalling abilities of Eph receptors and ephrins could account for the different effects that are elicited on axon guidance, cell adhesion and cell migration during development, homeostasis and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt.

              Both pro- and antioncogenic properties have been attributed to EphA2 kinase. We report that a possible cause for this apparent paradox is diametrically opposite roles of EphA2 in regulating cell migration and invasion. While activation of EphA2 with its ligand ephrin-A1 inhibited chemotactic migration of glioma and prostate cancer cells, EphA2 overexpression promoted migration in a ligand-independent manner. Surprisingly, the latter effects required phosphorylation of EphA2 on serine 897 by Akt, and S897A mutation abolished ligand-independent promotion of cell motility. Ephrin-A1 stimulation of EphA2 negated Akt activation by growth factors and caused EphA2 dephosphorylation on S897. In human astrocytoma, S897 phosphorylation was correlated with tumor grades and Akt activation, suggesting that the Akt-EphA2 crosstalk may contribute to brain tumor progression.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                29 April 2013
                : 201
                : 3
                : 467-484
                Affiliations
                [1 ]Research Programs Unit, Genome-Scale Biology , and [2 ]Molecular Cancer Biology, Haartman Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
                [3 ]Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
                Author notes
                Correspondence to Kaisa Lehti: kaisa.lehti@ 123456helsinki.fi

                N. Sugiyama and E. Gucciardo contributed equally to this paper.

                M. Varjosalo’s present address is System Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.

                Article
                201205176
                10.1083/jcb.201205176
                3639392
                23629968
                ba4db56c-3cbe-4101-aeed-35a074157f66
                © 2013 Sugiyama et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 28 May 2012
                : 28 March 2013
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article