Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Delayed Bone Age Might Accelerate the Response to Human Growth Hormone Treatment in Small for Gestational Age Children with Short Stature

      research-article
      ,
      International Journal of Endocrinology
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Growth hormone (GH) treatment is recommended to improve growth and psychosocial problems in short stature children born small for gestational age (SGA). Although GH therapy in these patients has been extensively studied, the impact of therapy according to delays in bone age (BA) is not known well.

          Objective

          To investigate the effects of GH therapy in SGA patients with short stature according to BA delay.

          Methods

          We retrospectively analyzed changes in height SD score (SDS) and BA/chronological age (CA) after 6 and 12 months of GH therapy in patients grouped according to BA delay. We studied 27 SGA children with short stature in the pediatric endocrinology clinic of Kyungpook National University Children's Hospital.

          Results

          Of the 27 patients, 9 had <2 years of BA delay, while 18 had >2 years of delay. There were no significant differences between the two groups in terms of gestational age and weight at birth, height SDS, IGF-1 SDS, and growth hormone dosage at the beginning of therapy. However, height SDS increased significantly in the group with >2 years of BA delay after 6 months of GH therapy (−2.50 ± 0.61 vs −1.87 ± 0.82; p=0.037) and 12 months (−2.27 ± 0.70 vs −1.63 ± 0.65; p=0.002). When height SDS was compared between with and without GHD, there were no significant differences.

          Conclusions

          Delayed BA (>2 years) may impact the response to GH treatment in SGA children with short stature.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          International Small for Gestational Age Advisory Board consensus development conference statement: management of short children born small for gestational age, April 24-October 1, 2001.

          To provide pediatric endocrinologists, general pediatricians, neonatologists, and primary care physicians with recommendations for the management of short children born small for gestational age (SGA). A 13-member independent panel of pediatric endocrinologists was convened to discuss relevant issues with respect to definition, diagnosis, and clinical management of short children born SGA. Panel members convened over a series of 3 meetings to thoroughly review, discuss, and come to consensus on the identification and treatment of short children who are born SGA. SGA is defined as birth weight and/or length at least 2 standard deviations (SDs) below the mean for gestational age ( 2 SD below the mean; this catch-up process is usually completed by the time they are 2 years of age. A child who is SGA and older than 3 years and has persistent short stature (ie, remaining at least 2 SD below the mean for chronologic age) is not likely to catch up and should be referred to a pediatrician who has expertise in endocrinology. Bone age is not a reliable predictor of height potential in children who are SGA. Nevertheless, a standard evaluation for short stature should be performed. A diagnosis of SGA does not exclude growth hormone (GH) deficiency, and GH assessment should be performed if there is clinical suspicion or biochemical evidence of GH deficiency. At baseline, insulin-like growth factor-I, insulin-like growth factor binding protein-3, fasting insulin, glucose, and lipid levels as well as blood pressure should be measured, and all aspects of SGA-not just stature-should be addressed with parents. The objectives of GH therapy in short children who are SGA are catch-up growth in early childhood, maintenance of normal growth in childhood, and achievement of normal adult height. GH therapy is effective and safe in short children who are born SGA and should be considered in those older than 2 to 3 years. There is long-term experience of improved growth using a dosage range from 0.24 to 0.48 mg/kg/wk. Higher GH doses (0.48 mg/kg/wk [0.2 IU/kg/d]) are more effective for the short term. Whether the higher GH dose is more efficacious than the lower dose in terms of adult height results is not yet known. Only adult height results of randomized dose-response studies will give a definite answer. Monitoring is necessary to ensure safety of medication. Children should be monitored for changes in glucose homeostasis, lipids, and blood pressure during therapy. The frequency and intensity of monitoring will vary depending on risk factors such as family history, obesity, and puberty.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Risk factors for small for gestational age infants.

            There are many established risk factors for babies who are small for gestational age (SGA) by population birth weight centiles (usually defined as <10th centile). The confirmed maternal risk factors include short stature, low weight, Indian or Asian ethnicity, nulliparity, mother born SGA, cigarette smoking and cocaine use. Maternal medical history of: chronic hypertension, renal disease, anti-phospholipid syndrome and malaria are associated with increased SGA. Risk factors developing in pregnancy include heavy bleeding in early pregnancy, placental abruption, pre-eclampsia and gestational hypertension. A short or very long inter-pregnancy interval, previous SGA infant or previous stillbirth are also risk factors. Paternal factors including changed paternity, short stature and father born SGA also contribute. Factors associated with reduced risk of SGA or increased birth weight include high maternal milk consumption and high intakes of green leafy vegetables and fruit. Future studies need to investigate risk factors for babies SGA by customised centiles as these babies have greater morbidity and mortality than babies defined as SGA by population centiles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adult height after long-term, continuous growth hormone (GH) treatment in short children born small for gestational age: results of a randomized, double-blind, dose-response GH trial.

              The GH dose-response effect of long-term continuous GH treatment on adult height (AH) was evaluated in 54 short children born small for gestational age (SGA) who were participating in a randomized, double-blind, dose-response trial. Patients were randomly and blindly assigned to treatment with either 3 IU (group A) or 6 IU (group B) GH/m(2).d ( approximately 0.033 or 0.067 mg/kg.d, respectively). The mean (+/-SD) birth length was -3.6 (1.4), the age at the start of the study was 8.1 (1.9) yr, and the height SD score (SDS) at the start of the study -3.0 (0.7). Seventeen of the 54 children were partially GH deficient (stimulated GH peak, 10-20 mU/liter). Fifteen non-GH-treated, non-GH-deficient, short children born SGA, with similar inclusion criteria, served as controls [mean (+/-SD) birth length, -3.3 (1.2); age at start, 7.8 (1.7) yr; height SDS at start, -2.6 (0.5)]. GH treatment resulted in an AH above -2 SDS in 85% of the children after a mean (+/-SD) GH treatment period of 7.8 (1.7) yr. The mean (SD) AH SDS was -1.1 (0.7) for group A and -0.9 (0.8) for group B, resulting from a mean (+/-SD) gain in height SDS of 1.8 (0.7) for group A and 2.1 (0.8) for group B. No significant differences between groups A and B were found for AH SDS (mean difference, 0.3 SDS; 95% confidence interval, -0.2, 0.6; P > 0.2) and gain in height SDS (mean difference, 0.3 SDS; 95% confidence interval, -0.1, 0.7; P > 0.1). When corrected for target height, the mean corrected AH SDS was -0.2 (0.8) for group A and -0.4 (0.9) for group B. The mean (+/-SD) AH SDS of the control group [-2.3 (0.7)] was significantly lower than that of the GH-treated group (P < 0.001). Multiple regression analysis indicated the following predictive variables for AH SDS: target height SDS, height SDS, and chronological age minus bone age (years) at the start of the study. GH dose had no significant effect. In conclusion, long-term continuous GH treatment in short children born SGA without signs of persistent catch-up growth leads to a normalization of AH, even with a GH dose of 3 IU/m(2).d ( approximately 0.033 mg/kg.d).
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Endocrinol
                Int J Endocrinol
                IJE
                International Journal of Endocrinology
                Hindawi
                1687-8337
                1687-8345
                2019
                18 December 2019
                : 2019
                : 8454303
                Affiliations
                Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
                Author notes

                Academic Editor: Marco Faustini-Fustini

                Author information
                https://orcid.org/0000-0001-9786-7898
                https://orcid.org/0000-0002-0643-7233
                Article
                10.1155/2019/8454303
                6942810
                31933639
                ba47f7e3-9964-4724-91fa-41b55e1b626b
                Copyright © 2019 Jung-Eun Moon and Cheol Woo Ko.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 August 2019
                : 14 November 2019
                Categories
                Research Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content121

                Cited by3

                Most referenced authors285