38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Desiccation Risk Drives the Spatial Ecology of an Invasive Anuran ( Rhinella marina) in the Australian Semi-Desert

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Some invasive species flourish in places that impose challenges very different from those faced in their native geographic ranges. Cane toads ( Rhinella marina) are native to tropical and subtropical habitats of South and Central America, but have colonised extremely arid regions over the course of their Australian invasion. We radio-tracked 44 adult cane toads at a semi-arid invasion front to investigate how this invasive anuran has managed to expand its geographic range into arid areas that lie outside of its native climatic niche. As predicted from their low physiological control over rates of evaporative water loss, toads selected diurnal shelter sites that were consistently cooler and damper (and thus, conferred lower water loss rates) than nearby random sites. Desiccation risk also had a profound influence on rates of daily movement. Under wet conditions, toads that were far from water moved further between shelter sites than did conspecifics that remained close to water, presumably in an attempt to reach permanent water sources. However, this relationship was reversed under dry conditions, such that only toads that were close to permanent water bodies made substantial daily movements. Toads that were far from water bodies also travelled along straighter paths than did conspecifics that generally remained close to water. Thus, behavioural flexibility—in particular, an ability to exploit spatial and temporal heterogeneity in the availability of moist conditions—has allowed this invasive anuran to successfully colonize arid habitats in Australia. This finding illustrates that risk assessment protocols need to recognise that under some circumstances an introduced species may be able to thrive in conditions far removed from any that it experiences in its native range.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          The ecological impact of invasive cane toads (Bufo marinus) in Australia.

          Although invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time. Populations of large predators (e.g., varanid and scincid lizards, elapid snakes, freshwater crocodiles, and dasyurid marsupials) may be imperilled by toad invasion, but impacts vary spatially even within the same predator species. Some of the taxa severely impacted by toad invasion recover within a few decades, via aversion learning and longer-term adaptive changes. No native species have gone extinct as a result of toad invasion, and many native taxa widely imagined to be at risk are not affected, largely as a result of their physiological ability to tolerate toad toxins (e.g., as found in many birds and rodents), as well as the reluctance of many native anuran-eating predators to consume toads, either innately or as a learned response. Indirect effects of cane toads as mediated through trophic webs are likely as important as direct effects, but they are more difficult to study. Overall, some Australian native species (mostly large predators) have declined due to cane toads; others, especially species formerly consumed by those predators, have benefited. For yet others, effects have been minor or have been mediated indirectly rather than through direct interactions with the invasive toads. Factors that increase a predator's vulnerability to toad invasion include habitat overlap with toads, anurophagy, large body size, inability to develop rapid behavioral aversion to toads as prey items, and physiological vulnerability to bufotoxins as a result of a lack of coevolutionary history of exposure to other bufonid taxa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invasion success of vertebrates in Europe and North America.

            Species become invasive if they (i) are introduced to a new range, (ii) establish themselves, and (iii) spread. To address the global problems caused by invasive species, several studies investigated steps ii and iii of this invasion process. However, only one previous study looked at step i and examined the proportion of species that have been introduced beyond their native range. We extend this research by investigating all three steps for all freshwater fish, mammals, and birds native to Europe or North America. A higher proportion of European species entered North America than vice versa. However, the introduction rate from Europe to North America peaked in the late 19th century, whereas it is still rising in the other direction. There is no clear difference in invasion success between the two directions, so neither the imperialism dogma (that Eurasian species are exceptionally successful invaders) is supported, nor is the contradictory hypothesis that North America offers more biotic resistance to invaders than Europe because of its less disturbed and richer biota. Our results do not support the tens rule either: that approximately 10% of all introduced species establish themselves and that approximately 10% of established species spread. We find a success of approximately 50% at each step. In comparison, only approximately 5% of native vertebrates were introduced in either direction. These figures show that, once a vertebrate is introduced, it has a high potential to become invasive. Thus, it is crucial to minimize the number of species introductions to effectively control invasive vertebrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progress in invasion biology: predicting invaders.

              Predicting which species are probable invaders has been a long-standing goal of ecologists, but only recently have quantitative methods been used to achieve such a goal. Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders. For example, the probability of bird establishment increases with the number of individuals released and the number of release events. Also, the probability of plant invasiveness increases if the species has a history of invasion and reproduces vegetatively. These promising quantitative approaches should be more widely applied to allow us to predict patterns of invading species more successfully.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                17 October 2011
                : 6
                : 10
                : e25979
                Affiliations
                [1]School of Biological Sciences A08, University of Sydney, Sydney, New South Wales, Australia
                University of Sao Paulo, Brazil
                Author notes

                Conceived and designed the experiments: RT RS. Performed the experiments: RT. Analyzed the data: RT. Contributed reagents/materials/analysis tools: RT. Wrote the paper: RT RS.

                Article
                PONE-D-11-12068
                10.1371/journal.pone.0025979
                3197141
                22043300
                b9bbe84d-371f-4813-88a1-f5fc9d232207
                Tingley, Shine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 June 2011
                : 14 September 2011
                Page count
                Pages: 6
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Aquatic Environments
                Freshwater Environments
                Terrestrial Environments
                Ecological Metrics
                Extinction Risk
                Behavioral Ecology
                Biodiversity
                Biota
                Biogeography
                Conservation Science
                Ecophysiology
                Evolutionary Ecology
                Freshwater Ecology
                Physiological Ecology
                Spatial and Landscape Ecology
                Species Extinction
                Terrestrial Ecology
                Zoology
                Animal Behavior
                Animal Physiology
                Herpetology
                Earth Sciences
                Geography
                Biogeography
                Geoinformatics
                Marine and Aquatic Sciences
                Freshwater Ecology
                Social and Behavioral Sciences
                Geography
                Biogeography
                Geoinformatics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content130

                Cited by30

                Most referenced authors157