9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Artificial water points facilitate the spread of an invasive vertebrate in arid Australia

      , , , ,
      Journal of Applied Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Interactive effects of habitat modification and species invasion on native species decline.

          Different components of global environmental change are often studied and managed independently, but mounting evidence points towards complex non-additive interaction effects between drivers of native species decline. Using the example of interactions between land-use change and biotic exchange, we develop an interpretive framework that will enable global change researchers to identify and discriminate between major interaction pathways. We formalise a distinction between numerically mediated versus functionally moderated causal pathways. Despite superficial similarity of their effects, numerical and functional pathways stem from fundamentally different mechanisms of action and have fundamentally different consequences for conservation management. Our framework is a first step toward building a better quantitative understanding of how interactions between drivers might mitigate or exacerbate the net effects of global environmental change on biotic communities in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ecological impact of invasive cane toads (Bufo marinus) in Australia.

            Although invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time. Populations of large predators (e.g., varanid and scincid lizards, elapid snakes, freshwater crocodiles, and dasyurid marsupials) may be imperilled by toad invasion, but impacts vary spatially even within the same predator species. Some of the taxa severely impacted by toad invasion recover within a few decades, via aversion learning and longer-term adaptive changes. No native species have gone extinct as a result of toad invasion, and many native taxa widely imagined to be at risk are not affected, largely as a result of their physiological ability to tolerate toad toxins (e.g., as found in many birds and rodents), as well as the reluctance of many native anuran-eating predators to consume toads, either innately or as a learned response. Indirect effects of cane toads as mediated through trophic webs are likely as important as direct effects, but they are more difficult to study. Overall, some Australian native species (mostly large predators) have declined due to cane toads; others, especially species formerly consumed by those predators, have benefited. For yet others, effects have been minor or have been mediated indirectly rather than through direct interactions with the invasive toads. Factors that increase a predator's vulnerability to toad invasion include habitat overlap with toads, anurophagy, large body size, inability to develop rapid behavioral aversion to toads as prey items, and physiological vulnerability to bufotoxins as a result of a lack of coevolutionary history of exposure to other bufonid taxa.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Effects of Groundwater Decline on Riparian Vegetation of Semiarid Regions: The San Pedro, Arizona

                Bookmark

                Author and article information

                Journal
                Journal of Applied Ecology
                J Appl Ecol
                Wiley-Blackwell
                00218901
                June 2014
                June 2014
                : 51
                : 3
                : 795-803
                Article
                10.1111/1365-2664.12232
                c0ab578d-e1a3-44c7-b0e8-56e900510616
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content659

                Cited by25

                Most referenced authors254