31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhizospheric Bacillus-Facilitated Effects on the Growth and Competitive Ability of the Invasive Plant Ageratina adenophora

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rhizospheric microbial community affects the population establishment of invasive plants in introduced areas, among which Bacillus has numerous functions in promoting plant growth. This study isolated and enriched the Bacillus community in the rhizospheric soil of the invasive plant Ageratina adenophora and the native accompanying plant Rabdosia amethystoides. The effects of these rhizospheric Bacillus communities on the growth and competition of A. adenophora and R. amethystoides were evaluated in pot experiments. The results showed that the number and diversity of Bacillus in the rhizospheric soil of A. adenophora were higher than those of R. amethystoides ( A. adenophora: 122 strains in soil, 16 Bacillus taxa; R. amethystoides: 88 strains in soil, 9 Bacillus taxa). After Bacillus inoculation of A. adenophora in a pot experiment, Bacillus idriensis, Bacillus toyonensis and Bacillus cereus were accumulated in the rhizospheric of A. adenophora, which significantly increased the nitrate nitrogen (NO 3 -N) content in the soil and the total carbon and nitrogen concentrations in A. adenophora in the mixed treatment. The selective accumulation of Bacillus enhanced the competitive advantage of A. adenophora over the native accompanying plant; the corrected index of relative competition intensity of A. adenophora-inoculated Bacillus reached double that of the uninoculated treatment, and the growth of native plants was greatly suppressed under mixed planting. Our study confirmed that invasion of A. adenophora can lead to the accumulation of specific Bacillus taxa in the rhizospheric soil, which in turn can increase the competitive advantage of A. adenophora.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbial nitrogen-cycling network

            Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              16S ribosomal DNA amplification for phylogenetic study.

              A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                14 June 2022
                2022
                : 13
                : 882255
                Affiliations
                [1] 1State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University , Kunming, China
                [2] 2Yunnan Plant Protection and Quarantine Station , Kunming, China
                Author notes

                Edited by: Katharina Pawlowski, Stockholm University, Sweden

                Reviewed by: Josep Ramoneda, University of Colorado Boulder, United States; Zengtao Zhong, Nanjing Agricultural University, China

                *Correspondence: Furong Gui, furonggui18@ 123456sina.com

                These authors share first authorship

                This article was submitted to Plant Symbiotic Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.882255
                9237563
                35774817
                b9b0cc12-ef0a-4b8f-be0c-d4266ab32939
                Copyright © 2022 Du, Chen, Li, Sun and Gui.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 February 2022
                : 27 April 2022
                Page count
                Figures: 5, Tables: 2, Equations: 3, References: 82, Pages: 12, Words: 10164
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                ageratina adenophora,invasive plant,rhizosphere,bacillus,competitive advantage,plant-soil feedback

                Comments

                Comment on this article