1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STEAP3 Affects Ovarian Cancer Progression by Regulating Ferroptosis through the p53/SLC7A11 Pathway

      research-article
      , , , , ,
      Mediators of Inflammation
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ovarian cancer (OC) is a common malignant cancer in women with a low overall survival rate, and ferroptosis may be a potential new strategy for treatment. Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a gene closely related to ferroptosis, yet the role of STEAP3 in OC has not yet been thoroughly investigated. Using biological information analysis, we first found that STEAP3 was highly expressed in OC, which was significantly associated with poor prognosis of patients and was an independent prognostic factor. Through cloning, scratch, and transwell experiments, we subsequently found that knockdown of STEAP3 significantly reduced the proliferation and migration ability of OC cells. Furthermore, we found that knockdown of STEAP3 induced ferroptosis in OC cells by detecting ferroptosis indicators. Mechanistically, we also found that knockdown of STEAP3 induced ferroptosis through the p53/SLC7A11 signaling pathway. Through tumorigenic experiments in nude mice, we finally verified that the knockdown of STEAP3 could inhibit tumor growth in vivo by promoting ferroptosis through the p53 pathway. Overall, our study identified a novel therapeutic target for ferroptosis in OC and explored its specific mechanism of action.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis as a p53-mediated activity during tumour suppression.

            Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p53(3KR), an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p53(3KR)-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis: machinery and regulation

              Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death caused by lipid peroxidation, which is controlled by integrated oxidation and antioxidant systems. The iron-containing enzyme lipoxygenase is the main promoter of ferroptosis by producing lipid hydroperoxides, and its function relies on the activation of ACSL4-dependent lipid biosynthesis. In contrast, the selenium-containing enzyme GPX4 is currently recognized as a central repressor of ferroptosis, and its activity depends on glutathione produced from the activation of the cystine-glutamate antiporter SLC7A11. Many metabolic (especially involving iron, lipids, and amino acids) and degradation pathways (macroautophagy/autophagy and the ubiquitin-proteasome system) orchestrate the complex ferroptotic response through direct or indirect regulation of iron accumulation or lipid peroxidation. Although the detailed mechanism of membrane injury during ferroptosis remains a mystery, ESCRT III-mediated plasma membrane repair can make cells resistant to ferroptosis. Here, we review the recent rapid progress in understanding the molecular mechanisms of ferroptosis and focus on the epigenetic, transcriptional, and posttranslational regulation of this process.Abbreviations: 2ME: beta-mercaptoethanol; α-KG: α-ketoglutarate; ccRCC: clear cell renal cell carcinoma; EMT: epithelial-mesenchymal transition; FAO: fatty acid beta-oxidation; GSH: glutathione; MEFs: mouse embryonic fibroblasts; MUFAs: monounsaturated fatty acids; NO: nitric oxide; NOX: NADPH oxidase; PPP: pentose phosphate pathway; PUFA: polyunsaturated fatty acid; RCD: regulated cell death; RNS: reactive nitrogen species; ROS: reactive oxygen species; RTAs: radical-trapping antioxidants; UPS: ubiquitin-proteasome system; UTR: untranslated region.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                mi
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2024
                26 February 2024
                : 2024
                : 4048527
                Affiliations
                Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
                Author notes

                Academic Editor: Daniela Caccamo

                Author information
                https://orcid.org/0009-0008-6854-406X
                Article
                10.1155/2024/4048527
                10911874
                38440354
                b982ebdb-1fd3-47b5-ba86-e8d5b76dfb18
                Copyright © 2024 Yi Han et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 November 2023
                : 14 January 2024
                : 3 February 2024
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article