6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pathways Linking Oral Bacteria, Nitric Oxide Metabolism, and Health

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitrate-reducing oral bacteria have gained a lot of interest due to their involvement in nitric oxide (NO) synthesis and its important cardiometabolic outcomes. Consortia of nitrate-metabolizing oral bacteria associated with cardiometabolic health and cognitive function have been recently identified. Longitudinal studies and clinical trials have shown that chronic mouthwash use is associated with increased blood pressure and increased risk for prediabetes/diabetes and hypertension. Concurrently, recent studies are beginning to shed some light on the complexity of nitrate reduction pathways of oral bacteria, such as dissimilatory nitrate reduction to ammonium (DNRA), which converts nitrite into ammonium, and denitrification, which converts nitrite to NO, nitrous oxide, and dinitrogen. These pathways can affect the composition and metabolism of the oral microbiome; consequently, salivary nitrate and nitrite metabolism have been proposed as targets for probiotics and oral health. These pathways could also affect systemic NO levels because NO generated through denitrification can be oxidized back to nitrite in the saliva, thus facilitating flux along the NO 3 -NO 2 -NO pathway, while DNRA converts nitrite to ammonium, leading to reduced NO. It is, therefore, important to understand which pathway predominates under different oral environmental conditions, since the clinical consequences could be different for oral and systemic health. Recent studies show that oral hygiene measures such as tongue cleaning and dietary nitrate are likely to favor denitrifying bacteria such as Neisseria, which are linked with better cardiometabolic health. A vast body of literature demonstrates that redox potential, carbon-to-nitrate ratio, and nitrate-to-nitrite ratio are key environmental drivers of the competing denitrification and DNRA pathways in various natural and artificial ecosystems. Based on this information, a novel behavioral and microbial model for nitric oxide metabolism and health is proposed, which links lifestyle factors with oral and systemic health through NO metabolism.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide synthases: regulation and function.

          Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The oral microbiome and human health.

            In this brief review, we discuss our previous research on the relationship between the bacterial composition of salivary microbiota and periodontal disease. Analysis using a terminal restriction fragment length polymorphism method and an international comparison suggest that the predominance of the genera Prevotella and Veillonella in the salivary microbiota is attributable to periodontal disease conditions, and that the predominance of the genus Neisseria indicates healthy periodontal conditions. Furthermore, we recently used next-generation sequencing technology to perform a detailed large-scale analysis of the salivary microbiota. An important finding of that study was that high bacterial richness in the salivary microbiota was significantly associated with poor oral health, as indicated by decayed teeth, periodontitis, and poor oral hygiene. Another important result was that relative abundance of predominant bacteria in saliva was significantly associated with oral health-related conditions. Of the two different cohabiting groups of bacteria found in the salivary microbiota, a greater relative abundance of group I bacteria, which include Prevotella and Veillonella species, was associated with poor oral health, high body mass index, and old age. These findings suggest that the salivary microbiota reflects oral and systemic conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration.

              In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. We combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.
                Bookmark

                Author and article information

                Journal
                Journal of Dental Research
                J Dent Res
                SAGE Publications
                0022-0345
                1544-0591
                June 2022
                January 26 2022
                June 2022
                : 101
                : 6
                : 623-631
                Affiliations
                [1 ]University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
                [2 ]Department of Linguistics, Harvard University, Cambridge, MA, USA
                [3 ]Department of Pathology, University of Alabama at Birmingham and Center for Free Radical Biology, AL, USA
                [4 ]T. H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
                Article
                10.1177/00220345211064571
                35081826
                b9484c3c-6e01-48d6-a6bf-7954aa22028c
                © 2022

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article