4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.

          Related collections

          Most cited references211

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis

          Abstract Introduced in 2017, the GEPIA (Gene Expression Profiling Interactive Analysis) web server has been a valuable and highly cited resource for gene expression analysis based on tumor and normal samples from the TCGA and the GTEx databases. Here, we present GEPIA2, an updated and enhanced version to provide insights with higher resolution and more functionalities. Featuring 198 619 isoforms and 84 cancer subtypes, GEPIA2 has extended gene expression quantification from the gene level to the transcript level, and supports analysis of a specific cancer subtype, and comparison between subtypes. In addition, GEPIA2 has adopted new analysis techniques of gene signature quantification inspired by single-cell sequencing studies, and provides customized analysis where users can upload their own RNA-seq data and compare them with TCGA and GTEx samples. We also offer an API for batch process and easy retrieval of the analysis results. The updated web server is publicly accessible at http://gepia2.cancer-pku.cn/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor.

            Activation of the aryl hydrocarbon receptor (AHR) by environmental xenobiotic toxic chemicals, for instance 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), has been implicated in a variety of cellular processes such as embryogenesis, transformation, tumorigenesis and inflammation. But the identity of an endogenous ligand activating the AHR under physiological conditions in the absence of environmental toxic chemicals is still unknown. Here we identify the tryptophan (Trp) catabolite kynurenine (Kyn) as an endogenous ligand of the human AHR that is constitutively generated by human tumour cells via tryptophan-2,3-dioxygenase (TDO), a liver- and neuron-derived Trp-degrading enzyme not yet implicated in cancer biology. TDO-derived Kyn suppresses antitumour immune responses and promotes tumour-cell survival and motility through the AHR in an autocrine/paracrine fashion. The TDO-AHR pathway is active in human brain tumours and is associated with malignant progression and poor survival. Because Kyn is produced during cancer progression and inflammation in the local microenvironment in amounts sufficient for activating the human AHR, these results provide evidence for a previously unidentified pathophysiological function of the AHR with profound implications for cancer and immune biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells.

              The aryl hydrocarbon receptor (AHR) has been known to cause immunosuppression after binding dioxin. It has recently been discovered that the receptor may be central to T cell differentiation into FoxP3(+) regulatory T cells (Tregs) versus Th17 cells. In this paper, we demonstrate that kynurenine, the first breakdown product in the IDO-dependent tryptophan degradation pathway, activates the AHR. We furthermore show that this activation leads to AHR-dependent Treg generation. We additionally investigate the dependence of TGF-beta on the AHR for optimal Treg generation, which may be secondary to the upregulation of this receptor that is seen in T cells postexposure to TGF-beta. These results shed light on the relationship of IDO to the generation of Tregs, in addition to highlighting the central importance of the AHR in T cell differentiation. All tissues and cells were derived from mice.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 January 2021
                February 2021
                : 22
                : 3
                : 1104
                Affiliations
                Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; m.wlodarczyk214@ 123456gmail.com (M.S.); tomasz.plech@ 123456umlub.pl (T.P.)
                Author notes
                [* ]Correspondence: katarzyna.walczak@ 123456umlub.pl ; Tel.: +48-81-448-6774
                [†]

                These authors contributed equally to this work.

                [‡]

                A Volunteer in the Department of Pharmacology, Medical University of Lublin.

                Author information
                https://orcid.org/0000-0001-8326-4818
                https://orcid.org/0000-0001-5696-8289
                https://orcid.org/0000-0002-8162-8435
                Article
                ijms-22-01104
                10.3390/ijms22031104
                7865493
                33499346
                b86fbb83-2bfd-4dc0-b886-ec187ac9da07
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2020
                : 19 January 2021
                Categories
                Review

                Molecular biology
                aryl hydrocarbon receptor,tryptophan,kynurenine,ficz,skin,kynurenic acid,atopic dermatitis,psoriasis,melanoma

                Comments

                Comment on this article