The aryl hydrocarbon receptor (AHR) has been known to cause immunosuppression after binding dioxin. It has recently been discovered that the receptor may be central to T cell differentiation into FoxP3(+) regulatory T cells (Tregs) versus Th17 cells. In this paper, we demonstrate that kynurenine, the first breakdown product in the IDO-dependent tryptophan degradation pathway, activates the AHR. We furthermore show that this activation leads to AHR-dependent Treg generation. We additionally investigate the dependence of TGF-beta on the AHR for optimal Treg generation, which may be secondary to the upregulation of this receptor that is seen in T cells postexposure to TGF-beta. These results shed light on the relationship of IDO to the generation of Tregs, in addition to highlighting the central importance of the AHR in T cell differentiation. All tissues and cells were derived from mice.