Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fully Automated Selfish Mining Analysis in Efficient Proof Systems Blockchains

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems -- like proofs of stake or proofs of space -- and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue of the adversary, thus minimizing the chain quality. To this end, we propose a novel selfish mining attack that aims to maximize this objective and formally model the attack as a Markov decision process (MDP). We then present a formal analysis procedure which computes an ϵ-tight lower bound on the optimal expected relative revenue in the MDP and a strategy that achieves this ϵ-tight lower bound, where ϵ>0 may be any specified precision. Our analysis is fully automated and provides formal guarantees on the correctness. We evaluate our selfish mining attack and observe that it achieves superior expected relative revenue compared to two considered baselines. In concurrent work [Sarenche FC'24] does an automated analysis on selfish mining in predictable longest-chain blockchains based on efficient proof systems. Predictable means the randomness for the challenges is fixed for many blocks (as used e.g., in Ouroboros), while we consider unpredictable (Bitcoin-like) chains where the challenge is derived from the previous block.

          Related collections

          Author and article information

          Journal
          07 May 2024
          Article
          2405.04420
          b7fbe9cc-fd2b-4486-9f07-ff33497177aa

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          cs.CR

          Security & Cryptology
          Security & Cryptology

          Comments

          Comment on this article