4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of age on the toxicity of immune checkpoint inhibition

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Indications for immune checkpoint inhibitor therapy are increasing. As the population ages, many patients receiving such drugs will be older adults. Such patients are under-represented in clinical trials, and therefore the safety of immune checkpoint inhibitors in this population has not been adequately assessed. A retrospective multicenter analysis of toxicities was performed in patients with advanced or metastatic solid cancers receiving anti-programmed cell death protein 1 (anti-PD-1) and/or anti-CTLA4 antibodies across three age cohorts (<65 years, 65–74 years and ≥75 years) using univariable and multivariable analyzes. Eligible patients (n=448) were divided into age cohorts: <65 years (n=185), 65–74 years (n=154) and ≥75 years (n=109). Fewer patients in the oldest cohort (7.3%) received an anti-CTLA4 antibody containing regimen compared with the younger cohorts (21.1% and 17.5%). There was no significant difference overall in all grade or ≥G3 toxicities between age cohorts. Significantly fewer patients in the older (65–74 years and ≥75 years) age cohorts discontinued treatment because of toxicity (10.1% and 7.4%) compared with in the <65 years cohort (20.5%; p=0.006). Using logistic regression, only treatment type (ipilimumab containing) was significantly associated with all grade toxicity. However, there was a significantly lower incidence of all-grade endocrine toxicity in the oldest cohort (11.0%) compared with the youngest cohort (22.7%, p=0.02; OR 0.43, 95% CI 0.21 to 0.87), while all-grade dermatological toxicity showed the reverse trend (28.4% vs 18.9%; OR 1.85, 95% CI 1.04 to 3.30). Results were corroborated in the sensitivity analysis using only data from patients who received PD-1 inhibitor monotherapy. This multicenter, real-world cohort demonstrates that immune checkpoint inhibitor therapy is safe and well tolerated regardless of age, with no appreciable increase in adverse events in older adult patients.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Cell intrinsic alterations underlie hematopoietic stem cell aging.

          Loss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naive T cell maintenance and function in human aging.

            In studies of immune aging, naive T cells frequently take center stage. Describing the complexity of the human naive T cell repertoire remains a daunting task; however, emerging data suggest that homeostatic mechanisms are robust enough to maintain a large and diverse CD4 T cell repertoire with age. Compartment shrinkage and clonal expansions are challenges for naive CD8 T cells. In addition to population aspects, identification of potentially targetable cellular defects is receiving renewed interest. The last decade has seen remarkable progress in identifying genetic and biochemical pathways that are pertinent for aging in general and that are instructive to understand naive T cell dysfunction. One hallmark sets naive T cell aging apart from most other tissues except stem cells: they initiate but do not complete differentiation programs toward memory cells. Maintaining quiescence and avoiding differentiation may be the ultimate challenge to maintain the functions unique for naive T cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune aging and autoimmunity.

              Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2020
                8 October 2020
                : 8
                : 2
                : e000871
                Affiliations
                [1 ]departmentDepartment of Surgery and Cancer , Imperial College London , London, London, UK
                [2 ]departmentSchool of Cancer and Pharmaceutical Sciences , King's College London , London, UK
                [3 ]departmentDepartment of Oncology , University Hospitals of Leicester NHS Trust , Leicester, Leicester, UK
                [4 ]departmentGuy's Cancer Centre , Guy's and St. Thomas' NHS Foundation Trust , London, London, UK
                [5 ]departmentDepartment of Oncology , University of Oxford & Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust , Oxford, Oxfordshire, UK
                [6 ]departmentDepartment of Haematology , Guy's and St. Thomas' NHS Foundation Trust , London, London, UK
                [7 ]departmentTranslational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences , King's College London, Guy's Hospital , London, UK
                Author notes
                [Correspondence to ] Dr Debra H Josephs; debra.josephs@ 123456gstt.nhs.uk

                AS and SZ are joint first authors.

                MVH and DHJ are joint senior authors.

                Author information
                http://orcid.org/0000-0001-6570-4912
                Article
                jitc-2020-000871
                10.1136/jitc-2020-000871
                7545628
                33033183
                b7d91b70-2cc6-4ca3-b046-42ec68abacfc
                © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See https://creativecommons.org/licenses/by/4.0/.

                History
                : 22 May 2020
                Funding
                Funded by: CRUK City of London Centre;
                Funded by: CRUK City of London Centre;
                Categories
                Short Report
                1506
                Custom metadata
                unlocked

                immunotherapy,programmed cell death 1 receptor,self tolerance

                Comments

                Comment on this article