85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease. We hypothesized that blocking a combination of checkpoint receptors in the context of low-dose, lymphodepleting whole body radiation would boost anti-tumor immunity.

          Methods

          To test our central hypothesis, we utilized a 5T33 murine multiple myeloma model. Myeloma-bearing mice were treated with a low dose of whole body irradiation and combinations of blocking antibodies to PD-L1, LAG-3, TIM-3, CD48 (the ligand for 2B4) and CTLA4.

          Results

          Temporal phenotypic analysis of bone marrow from myeloma-bearing mice demonstrated that elevated percentages of PD-1, 2B4, LAG-3 and TIM-3 proteins were expressed on T cells. When PD-L1 blockade was combined with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive increases in survival were observed (survival rates improved from ~30% to >80%). The increased survival rates correlated with increased frequencies of tumor-reactive CD8 and CD4 T cells. When stimulated in vitro with myeloma cells, CD8 T cells from treated mice produced elevated levels proinflammatory cytokines. Cytokines were spontaneously released from CD4 T cells isolated from mice treated with PD-L1 plus CTLA4 blocking antibodies.

          Conclusions

          These data indicate that blocking PD-1/PD-L1 interactions in conjunction with other immune checkpoint proteins provides synergistic anti-tumor efficacy following lymphodepletive doses of whole body irradiation. This strategy is a promising combination strategy for myeloma and other hematologic malignancies.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40425-014-0043-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody.

          T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti-PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1(+) MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma.

            The aberrant expression of programmed cell death 1 ligands 1 and 2 (PD-Ls) on tumor cells dampens antitumor immunity, resulting in tumor immune evasion. In this study, we investigated the expression of PD-Ls in human hepatocellular carcinoma (HCC) to define their prognostic significance after curative surgery. Immunohistochemistry was used to investigate PD-Ls expression as well as granzyme B+ cytotoxic and FoxP3+ regulatory T cell infiltration on tissue microarrays containing 240 randomly selected HCC patients who underwent surgery. The results were further verified in an independent cohort of 125 HCC patients. PD-Ls expression on HCC cell lines was detected by Western blot assay. Patients with higher expression of PD-L1 had a significantly poorer prognosis than patients with lower expression. Although patients with higher expression of PD-L2 also had a poorer survival, the difference in recurrence was not statistically significant. Multivariate analysis identified tumor expression of PD-L1 as an independent predictor for postoperative recurrence. No correlation was found between PD-Ls expression and granzyme B+ lymphocyte infiltration, whereas a significant positive correlation was detected between PD-Ls expression and FoxP3+ lymphocyte infiltration. In addition, tumor-infiltrating cytotoxic and regulatory T cells were also independent prognosticators for both survival and recurrence. The prognostic value of PD-L1 expression was validated in the independent data set. Our data suggest for the first time that PD-L1 status may be a new predictor of recurrence for HCC patients and provide the rationale for developing a novel therapy of targeting the PD-L1/PD-1 pathway against this fatal malignancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.

              The role of the cell-surface molecule CTLA-4 in the regulation of T cell activation has been controversial. Here, lymph nodes and spleens of CTLA-4-deficient mice accumulated T cell blasts with up-regulated activation markers. These blast cells also infiltrated liver, heart, lung, and pancreas tissue, and amounts of serum immunoglobulin were elevated. The mice invariably became moribund by 3 to 4 weeks of age. Although CTLA-4-deficient T cells proliferated spontaneously and strongly when stimulated through the T cell receptor, they were sensitive to cell death induced by cross-linking of the Fas receptor and by gamma irradiation. Thus, CTLA-4 acts as a negative regulator of T cell activation and is vital for the control of lymphocyte homeostasis.
                Bookmark

                Author and article information

                Contributors
                wjing@mcw.edu
                jgershan@mcw.edu
                jweber@mcw.edu
                dominikat@sbcglobal.net
                lmcolash@mcw.edu
                catherine.sabatos-peyton@novartis.com
                bjohnson@mcw.edu
                Journal
                J Immunother Cancer
                J Immunother Cancer
                Journal for Immunotherapy of Cancer
                BioMed Central (London )
                2051-1426
                20 January 2015
                20 January 2015
                2015
                : 3
                : 1
                : 2
                Affiliations
                [ ]Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
                [ ]Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139 USA
                Article
                43
                10.1186/s40425-014-0043-z
                4302511
                25614821
                8813ed92-8149-48d7-bd7b-5fbfb90ed166
                © Jing et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 August 2014
                : 1 December 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                low dose whole body irradiation,immune checkpoint proteins,blockade,pd-l1,tim-3,lag-3,ctla4,2b4,myeloma

                Comments

                Comment on this article