38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient induction of comprehensive immune responses to control pathogenic E. coli by clay nano-adjuvant with the moderate size and surface charge

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent decades, diseases caused by pathogenic Escherichia coli ( E. coli), enterohaemorrhagic E. coli (EHEC) O26 have been increasingly reported worldwide, which are as severe as those caused by EHEC strain O157:H7 and require effective intervention strategies. Herein, we report the application of clay nanoparticles, i.e. hectorites as effective nano-adjuvants for vaccination against EHEC O26 colonization. We show that medium size HEC (hectorite, around 73~77 nm diameter) is able to induce efficient humoral and cellular immune responses against EHEC antigen - intimin β (IB), which are significantly higher than those triggered by commercially used adjuvants - QuilA and Alum. We also demonstrate that mice immunized with IB adjuvanted with HEC nanoparticles elicit sufficient secretion of mucosal IgA, capable of providing effective protection against EHEC O26 binding to ruminant and human cells. In addition, we demonstrate for the first time that hectorites are able to initiate maturation of RAW 264.7 macrophages, inducing expression of co-stimulatory cytokines at a low nanoparticle concentration (10 μg/mL). Together these data strongly suggest that hectorite with optimized size is a highly efficient vaccine nano-adjuvant.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002.

          Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a well-recognized cause of bloody diarrhea and hemolytic-uremic syndrome (HUS). Non-O157 STEC contribute to this burden of illness but have been underrecognized as a result of diagnostic limitations and inadequate surveillance. Between 1983 and 2002, 43 state public health laboratories submitted 940 human non-O157 STEC isolates from persons with sporadic illnesses to the Centers for Diseases Control and Prevention reference laboratory for confirmation and serotyping. The most common serogroups were O26 (22%), O111 (16%), O103 (12%), O121 (8%), O45 (7%), and O145 (5%). Non-O157 STEC infections were most frequent during the summer and among young persons (median age, 12 years; interquartile range, 3-37 years). Virulence gene profiles were as follows: 61% stx(1) but not stx(2); 22% stx(2) but not stx(1); 17% both stx(1) and stx(2); 84% intimin (eae); and 86% enterohemolysin (E-hly). stx(2) was strongly associated with an increased risk of HUS, and eae was strongly associated with an increased risk of bloody diarrhea. STEC O111 accounted for most cases of HUS and was also the cause of 3 of 7 non-O157 STEC outbreaks reported in the United States. Non-O157 STEC can cause severe illness that is comparable to the illness caused by STEC O157. Strains that produce Shiga toxin 2 are much more likely to cause HUS than are those that produce Shiga toxin 1 alone. Improving surveillance will more fully elucidate the incidence and pathological spectrum of these emerging agents. These efforts require increased clinical suspicion, improved clinical laboratory isolation, and continued serotyping of isolates in public health laboratories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New horizons in adjuvants for vaccine development.

            Over the last decade, there has been a flurry of research on adjuvants for vaccines, and several novel adjuvants are now in licensed products or in late stage clinical development. The success of adjuvants in enhancing the immune response to recombinant antigens has led many researchers to re-focus their vaccine development programs. Successful vaccine development requires knowing which adjuvants to use and knowing how to formulate adjuvants and antigens to achieve stable, safe and immunogenic vaccines. For the majority of vaccine researchers this information is not readily available, nor is access to well-characterized adjuvants. In this review, we outline the current state of adjuvant research and development and how formulation parameters can influence the effectiveness of adjuvants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal IgA synthesis: regulation of front-line body defences.

              Immunoglobulin A is the most abundant immunoglobulin isotype in mucosal secretions. In this review, we summarize recent advances in our understanding of the sites, mechanisms and functions of intestinal IgA synthesis in mice. On the basis of these recent findings, we propose an updated model for the induction and regulation of IgA responses in the gut. In addition, we discuss new insights into the role of IgA in the maintenance of gut homeostasis and into the reciprocal interactions between gut B cells and the bacterial flora.
                Bookmark

                Author and article information

                Contributors
                t.mahony@uq.edu.au
                gordonxu@uq.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                17 October 2017
                17 October 2017
                2017
                : 7
                : 13367
                Affiliations
                [1 ]ISNI 0000 0000 9320 7537, GRID grid.1003.2, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, ; St Lucia, QLD 4072 Australia
                [2 ]ISNI 0000 0000 9320 7537, GRID grid.1003.2, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, ; St Lucia, QLD 4072 Australia
                [3 ]GRID grid.423403.2, Department of Agriculture and Fisheries, ; Brisbane City, QLD 4000 Australia
                Author information
                http://orcid.org/0000-0003-4573-7906
                http://orcid.org/0000-0001-6070-5035
                Article
                13570
                10.1038/s41598-017-13570-2
                5645426
                29042573
                b79ab4c6-a65f-49d1-b6b4-3f49540f8e4c
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 June 2017
                : 26 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content87

                Cited by9

                Most referenced authors681