1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of vagus nerve stimulation in genetic etiologies of drug-resistant epilepsy: a meta-analysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Drug-resistant epilepsy (DRE) affects many children. Vagus nerve stimulation (VNS) may improve seizure control; however, its role in children with genetic etiologies of epilepsy is not well described. The authors systematically reviewed the literature to examine the effectiveness of VNS in this cohort.

          METHODS

          In January 2021, the authors performed a systematic review of the PubMed/MEDLINE, SCOPUS/Embase, Cochrane, and Web of Science databases to investigate the impact of VNS on seizure outcomes in children with genetic etiologies of epilepsy. Primary outcomes included seizure freedom rate, ≥ 90% seizure reduction rate, and ≥ 50% seizure reduction rate. Secondary outcomes were seizure severity and quality of life (QOL), including cognitive, functional, and behavioral outcomes. A random-effects meta-analysis was performed.

          RESULTS

          The authors identified 125 articles, of which 47 with 216 nonduplicate patients were analyzed. Common diagnoses were Dravet syndrome (DS) (92/216 patients [42.6%]) and tuberous sclerosis complex (TSC) (63/216 [29.2%]). Seizure freedom was not reported in any patient with DS; the pooled proportion (95% CI) of patients with ≥ 50% seizure reduction was 41% (21%–58%). Secondary cognitive outcomes of VNS were variable in DS patients, but these patients demonstrated benefits in seizure duration and status epilepticus. In TSC patients, the pooled (95% CI) seizure freedom rate was 40% (12%–71%), ≥ 90% seizure reduction rate was 31% (8%–56%), and ≥ 50% reduction rate was 68% (48%–91%). Regarding the secondary outcomes of VNS in TSC patients, several studies reported decreased seizure severity and improved QOL outcomes. There was limited evidence regarding the use of VNS to treat patients with other genetic etiologies of epilepsy, such as mitochondrial disease, Rett syndrome, Doose syndrome, Landau-Kleffner syndrome, Aicardi syndrome, Angelman syndrome, ring chromosome 20 syndrome, and lissencephaly; variable responses were reported in a limited number of cases.

          CONCLUSIONS

          The authors conducted a systematic review of VNS outcomes in children with genetic etiologies of DRE. Among the most studied conditions, patients with TSC had substantial seizure reduction and improvements in QOL, whereas those with DS had less robust seizure reduction. Increased testing, diagnosis, and long-term follow-up studies are necessary to better characterize VNS response in these children.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies.

          To improve patient care and facilitate clinical research, the International League Against Epilepsy (ILAE) appointed a Task Force to formulate a consensus definition of drug resistant epilepsy. The overall framework of the definition has two "hierarchical" levels: Level 1 provides a general scheme to categorize response to each therapeutic intervention, including a minimum dataset of knowledge about the intervention that would be needed; Level 2 provides a core definition of drug resistant epilepsy using a set of essential criteria based on the categorization of response (from Level 1) to trials of antiepileptic drugs. It is proposed as a testable hypothesis that drug resistant epilepsy is defined as failure of adequate trials of two tolerated, appropriately chosen and used antiepileptic drug schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom. This definition can be further refined when new evidence emerges. The rationale behind the definition and the principles governing its proper use are discussed, and examples to illustrate its application in clinical practice are provided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy.

            Severe myoclonic epilepsy of infancy (SMEI) is a rare disorder that occurs in isolated patients. The disease is characterized by generalized tonic, clonic, and tonic-clonic seizures that are initially induced by fever and begin during the first year of life. Later, patients also manifest other seizure types, including absence, myoclonic, and simple and complex partial seizures. Psychomotor development stagnates around the second year of life. Missense mutations in the gene that codes for a neuronal voltage-gated sodium-channel alpha-subunit (SCN1A) were identified in families with generalized epilepsy with febrile seizures plus (GEFS+). GEFS+ is a mild type of epilepsy associated with febrile and afebrile seizures. Because both GEFS+ and SMEI involve fever-associated seizures, we screened seven unrelated patients with SMEI for mutations in SCN1A. We identified a mutation in each patient: four had frameshift mutations, one had a nonsense mutation, one had a splice-donor mutation, and one had a missense mutation. All mutations are de novo mutations and were not observed in 184 control chromosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis.

              The definition of drug-resistant epilepsy (DRE) affects case identification and treatment, and impacts prevalence or incidence estimates and health burden estimation in epidemiology. The objective of this systematic review is to evaluate the consistency between definitions of DRE in the literature and the official definition in the International League Against Epilepsy (ILAE) guidelines, and to estimate the incidence, prevalence, and risk factors for DRE.
                Bookmark

                Author and article information

                Journal
                Journal of Neurosurgery: Pediatrics
                Journal of Neurosurgery Publishing Group (JNSPG)
                1933-0707
                1933-0715
                June 01 2022
                June 01 2022
                : 29
                : 6
                : 667-680
                Affiliations
                [1 ]Sophie Davis Biomedical Education Program, City College of New York, City University of New York School of Medicine, New York, New York;
                [2 ]Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas; and
                [3 ]Department of Neurosurgery, Division of Pediatric Neurosurgery, Northwestern University, Lurie Children’s Hospital, Chicago, Illinois
                Article
                10.3171/2022.1.PEDS222
                35303699
                b76da333-8434-422d-8385-a309180a0c6f
                © 2022
                History

                Comments

                Comment on this article