30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study demonstrates a simple, stable, and scalable polydopamine (PDA) coated PVDF membrane for highly efficient solar-driven membrane distillation.

          Abstract

          Solar-driven membrane distillation using photothermal membranes is of considerable interest for future water desalination systems. However, the low energy efficiency, complex synthesis, and instability of current photothermal materials hinder their further development and practicability. In this study, for the first time, we demonstrate a simple, stable, and scalable polydopamine (PDA)-coated polyvinylidene fluoride (PVDF) membrane for highly efficient solar-driven membrane distillation (MD). Our membrane shows the best energy efficiency among existing photothermal MD membranes (45%) and the highest water flux (0.49 kg m −2 h −1) using a direct contact membrane distillation (DCMD) system under 0.75 kW m −2 solar irradiation. Such a performance was facilitated by the PDA coating, whose broad light absorption and outstanding photothermal conversion properties enable higher transmembrane temperature and increased driving force for vapor transport. In addition, the excellent hydrophobicity achieved by fluoro-silanization gives the membrane great wetting resistance and high salt rejection. More importantly, the robustness of our membrane, stemming from the excellent underwater adhesion of the PDA, makes the composite membrane an outstanding candidate for real-world applications.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Mussel-inspired surface chemistry for multifunctional coatings.

          We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Science and technology for water purification in the coming decades.

            One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The future of seawater desalination: energy, technology, and the environment.

              In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                October 9 2018
                2018
                : 6
                : 39
                : 18799-18807
                Affiliations
                [1 ]Department of Energy
                [2 ]Environmental and Chemical Engineering
                [3 ]Washington University in St. Louis
                [4 ]St. Louis
                [5 ]USA
                [6 ]Department of Mechanical Engineering and Materials Science
                Article
                10.1039/C8TA05738A
                b73a8312-04bf-47cb-bb0c-e2b1c906c326
                © 2018

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article