27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Macroporous three-dimensional MXene architectures for highly efficient solar steam generation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D MXene architectures combining the high light absorption ability of MXenes and porous melamine foam exhibit efficient solar steam generation.

          Abstract

          Efficient utilization of abundant solar energy for steam generation is an attractive, renewable, and environment-friendly technology for seawater desalination and wastewater purification, enabling solutions to address the global long-standing water scarcity issues. However, the low energy efficiency, high cost and complex systems with multiple components of state-of-the-art technologies hindered their practical applications. Herein, we report the first example of three-dimensional (3D) MXene architecture (3DMA)-based solar steam generators viaa facile two-step dip coating process without any annealing or high temperature carbonization. The 3DMAs prepared by a cost-effective, scalable, simple fabrication method show effective broadband solar absorption (∼98%) and excellent solar thermal conversion ability based on 2D to 3D morphological transformation of MXenes, making good use of intrinsic theoretical photothermal performance of MXenes. The particularly hydrophilic nature of MXenes and the macroporous structure of melamine foam allow continuous water supply to 3DMAs owing to their strong capillary effect. As a result, the 3DMAs achieve water evaporation rates of 1.41 and 7.49 kg m −2h −1under solar illumination of 1 sun and 5 sun with a superb solar steam efficiency of up to 88.7% and 94.2%, respectively. This scalable 3DMA can be used to produce clean water from both seawater and wastewater with rejections close to 100% for organic dyes and metal ions. This work creates a platform to develop novel composite materials for solar-driven seawater desalination and wastewater purification viaopening a new window for the utilization of MXenes as photothermal agents in practical applications.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

            Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              25th anniversary article: MXenes: a new family of two-dimensional materials.

              Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                April 24 2019
                2019
                : 7
                : 17
                : 10446-10455
                Affiliations
                [1 ]College of Polymer Science and Engineering
                [2 ]Sichuan University
                [3 ]State Key Laboratory of Polymer Materials Engineering
                [4 ]Chengdu
                [5 ]China
                Article
                10.1039/C9TA00176J
                1209b721-d22b-49e4-a941-1c6b7ff35f80
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content190

                Cited by106

                Most referenced authors953