Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis.

      The European Journal of Neuroscience
      Alzheimer Disease, enzymology, etiology, Amyloid Precursor Protein Secretases, genetics, metabolism, Amyloid beta-Peptides, Amyloid beta-Protein Precursor, Animals, Aspartic Acid Endopeptidases, Cells, Cultured, Mice, Mice, Mutant Strains, Mice, Transgenic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cleavage of amyloid-β precursor protein (APP) at the Asp1 β-secretase site of the amyloid-β protein (Aβ) domain by β-site Aβ precursor protein-cleaving enzyme 1 (BACE1) is required for the generation of Aβ, a central component of neuritic plaques in the Alzheimer's disease (AD) brain. In this study, we found that Aβ Glu11 is the major β-secretase site for cleavage of APP by BACE1 to generate soluble secreted APP (sAPPβ)(606) and the C-terminal membrane-bound fragment (CTF)β product C89. Cleavage of C89 by γ-secretase resulted in truncated Aβ generation in a non-amyloidogenic pathway. A familial AD-associated Swedish APP mutation adjacent to Aβ Asp1 shifted the major APP β-secretase cleavage site from Aβ Glu11 to Asp1, resulting in significant increases in sAPPβ596 and CTFβ C99 generation and the C99/89 ratio, in turn leading to increased Aβ production in cultured cells in vitro and transgenic AD model mouse brains in vivo. Furthermore, increased BACE1 expression facilitated APP being processed by the β-secretase processing pathway rather than the α-secretase pathway, leading to more Aβ production. Our results suggest that potentiating BACE1 cleavage of APP at both the Asp1 and Glu11 sites, or shifting the cleavage from the Glu11 site to the Asp1 site, could result in increased Aβ production and facilitate neuritic plaque formation. Our study provides new insights into how alteration of BACE1 expression and β-secretase cleavage site selection could contribute to Alzheimer pathogenesis and the pharmaceutical potential of modulating BACE1 expression and its cleavage site selection. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content354

          Cited by45