13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LINC00518 Promotes Cell Malignant Behaviors via Influencing EIF4A3-Mediated mRNA Stability of MITF in Melanoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melanoma has become the most severe sort of skin cancer, deriving from the pigment-producing melanocytes. Existing research has validated that long noncoding RNAs (lncRNAs) have critical function in the progression of cancers. LINC00518 has been studied in cutaneous melanoma; however, the molecular mechanism of LINC00518 in melanoma needs in-depth investigation. In our study, LINC00518 was revealed to be upregulated in melanoma tissues and cells, and melanoma patients in high LINC00518 expression group had poorer prognosis as depicted in GEPIA database. Functional assays revealed that LINC00518 depletion inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, MITF was confirmed to be upregulated in melanoma tissues and cells, and melanoma patients in high MITF expression group had poorer prognosis as displayed in GEPIA database. MITF expression was positively connected to LINC00518 expression. Additionally, results of mechanism assays uncovered EIF4A3 could bind with LINC00518 and MITF, and LINC00518 recruited EIF4A3 to stabilize MITF mRNA. Finally, it was demonstrated that upregulation of MITF could partially abrogate the inhibitory impact of LINC00518 knockdown on melanoma cell malignant behaviors. To summarize, LINC00518 promotes the malignant processes of melanoma cells through targeting EIF4A3/MITF axis, which might provide novel potential biomarkers for melanoma prognosis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The emerging role of lncRNAs in cancer.

          It is increasingly evident that many of the genomic mutations in cancer reside inside regions that do not encode proteins. However, these regions are often transcribed into long noncoding RNAs (lncRNAs). The recent application of next-generation sequencing to a growing number of cancer transcriptomes has indeed revealed thousands of lncRNAs whose aberrant expression is associated with different cancer types. Among the few that have been functionally characterized, several have been linked to malignant transformation. Notably, these lncRNAs have key roles in gene regulation and thus affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review aims to summarize current knowledge of lncRNAs from the cancer perspective. It discusses the strategies that led to the identification of cancer-related lncRNAs and the methodologies and challenges involving the study of these molecules, as well as the imminent applications of these findings to the clinic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The RNA-binding protein repertoire of embryonic stem cells.

            RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and yet annotation of RBPs is limited mainly to those with known RNA-binding domains. To systematically identify the RBPs of embryonic stem cells (ESCs), we here employ interactome capture, which combines UV cross-linking of RBP to RNA in living cells, oligo(dT) capture and MS. From mouse ESCs (mESCs), we have defined 555 proteins constituting the mESC mRNA interactome, including 283 proteins not previously annotated as RBPs. Of these, 68 new RBP candidates are highly expressed in ESCs compared to differentiated cells, implicating a role in stem-cell physiology. Two well-known E3 ubiquitin ligases, Trim25 (also called Efp) and Trim71 (also called Lin41), are validated as RBPs, revealing a potential link between RNA biology and protein-modification pathways. Our study confirms and expands the atlas of RBPs, providing a useful resource for the study of the RNA-RBP network in stem cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanoma.

              Melanoma is a common cancer in the Western world with an increasing incidence. Sun exposure is still considered to be the major risk factor for melanoma. The prognosis of patients with malignant (advanced-stage) melanoma differs widely between countries, but public campaigns advocating early detection have led to significant reductions in mortality rates. As well as sun exposure, distinct genetic alterations have been identified as associated with melanoma. For example, families with melanoma who have germline mutations in CDKN2A are well known, whereas the vast majority of sporadic melanomas have mutations in the mitogen-activated protein kinase cascade, which is the pathway with the highest oncogenic and therapeutic relevance for this disease. BRAF and NRAS mutations are typically found in cutaneous melanomas, whereas KIT mutations are predominantly observed in mucosal and acral melanomas. GNAQ and GNA11 mutations prevail in uveal melanomas. Additionally, the PI3K-AKT-PTEN pathway and the immune checkpoint pathways are important. The finding that programmed cell death protein 1 ligand 1 (PDL1) and PDL2 are expressed by melanoma cells, T cells, B cells and natural killer cells led to the recent development of programmed cell death protein 1 (PD1)-specific antibodies (for example, nivolumab and pembrolizumab). Alongside other new drugs - namely, BRAF inhibitors (vemurafenib and dabrafenib) and MEK inhibitors (trametinib and cobimetinib) - these agents are very promising and have been shown to significantly improve prognosis for patients with advanced-stage metastatic disease. Early signs are apparent that these new treatment modalities are also improving long-term clinical benefit and the quality of life of patients. This Primer summarizes the current understanding of melanoma, from mechanistic insights to clinical progress. For an illustrated summary of this Primer, visit: http://go.nature.com/vX2N9s.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2022
                30 June 2022
                : 2022
                : 3546795
                Affiliations
                1Clinical College of TCM, Hubei University of Chinese Medicine, Wuhan, 410063 Hubei Province, China
                2Dermatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000 Jiangsu Province, China
                3Department of Rehabilitation of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224000 Jiangsu Province, China
                4School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 410063 Hubei Province, China
                Author notes

                Academic Editor: Yingbin Shen

                Author information
                https://orcid.org/0000-0002-1754-3285
                https://orcid.org/0000-0001-8135-7965
                Article
                10.1155/2022/3546795
                9262545
                b68297ef-959e-4c40-a693-d240fc0daf94
                Copyright © 2022 Ping Zhang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 January 2022
                : 22 April 2022
                : 3 May 2022
                Funding
                Funded by: Hubei Provincial Department of Education
                Award ID: 0001070109
                Funded by: Hubei University of Chinese Medicine
                Award ID: 2015-182-2
                Categories
                Research Article

                Comments

                Comment on this article