58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human-Specific Histone Methylation Signatures at Transcription Start Sites in Prefrontal Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mapping histone methylation landscapes in neurons from human, chimpanzee, and macaque brains reveals coordinated, human-specific epigenetic regulation at hundreds of regulatory sequences.

          Abstract

          Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans.

          Author Summary

          Primate and human genomes comprise billions of base pairs, but we are unlikely to gain a deeper understanding of brain functions unique to human (including cognitive abilities and psychiatric diseases) merely by comparing linear DNA sequences. Such determinants of species-specific function might instead be found in the so-called “epigenetic” characteristics of genomic regions; differences in the protein-packaged chromatin state in which genomic DNA exists in the cell. Here, we examine neurons from the prefrontal cortex, a brain region closely associated with the evolution of the primate brain, and identify hundreds of short DNA sequences defined by human-specific changes in chromatin structure and function when compared to non-human primates. These changes included species-specific regulation of methylation marks on the histone proteins around which genomic DNA is wrapped. Sequences subject to human-specific epigenetic regulation showed significant spatial clustering, and despite being separated by hundreds of thousands of base pairs on the linear genome, were in direct physical contact with each other through chromosomal looping and other higher order chromatin features. This observation raises the intriguing possibility that coordinated epigenetic regulation via newly derived chromatin features at gene transcription start sites could play an important role in the emergence of human-specific gene expression networks in the brain. Finally, we identified a strong genetic footprint of hominid evolution in a small subset of transcription start sites defined by human-specific gains in histone methylation, with particularly strong enrichment in prefrontal cortex neurons. For example, the base pair sequence of DPP10 (a gene critically important for normal human brain development) not only showed distinct human-specific changes, but also evidence for more recent selective pressures within the human population.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of gene expression levels in mammalian organs.

          Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural variation of chromosomes in autism spectrum disorder.

            Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association between microdeletion and microduplication at 16p11.2 and autism.

              Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Children's Hospital Boston and in a large population study in Iceland. Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Children's Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Children's Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations. Copyright 2008 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                November 2012
                November 2012
                20 November 2012
                : 10
                : 11
                : e1001427
                Affiliations
                [1 ]Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
                [2 ]Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
                [3 ]Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
                [4 ]New England Primate Center, Southboro, Massachusetts, United States of America
                [5 ]Department of Neurology, Boston University, Boston, Massachusetts, United States of America
                [6 ]Yerkes National Primate Research Center/Emory University, Atlanta, Georgia, United States of America
                [7 ]Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russian Federation
                [8 ]School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
                [9 ]Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
                [10 ]Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
                Massey University, New Zealand
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: ER ZW JDJ SA. Performed the experiments: HPS JLC DR JST IC RB H-JC IBH CJP ACM. Analyzed the data: HPS JLC DR JST CJP IBH RB ACM. Contributed reagents/materials/analysis tools: ZW JDJ SA W-DY TMP RHM J-fC. Wrote the paper: ER JDJ ZW SA.

                Article
                PBIOLOGY-D-12-02074
                10.1371/journal.pbio.1001427
                3502543
                23185133
                b5d7ae45-a143-4342-8b9f-dc8a3ec20006
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 May 2012
                : 12 October 2012
                Page count
                Pages: 1
                Funding
                Supported by Yerkes Base Grant, P51RR000165, NEPRC Base Grant P51RR000168, US NIH grants R01MH081943, R21NS076958, R01071476, 1R01NS073947, R01DA021420, R01 AG029360, and Ministry of Education and Science of the RF 16.512.11.2102, 02.740.11.0854; EU FP7 242257-ADAMS; RFBR 11-04-02078. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Genetics
                Genomics
                Neuroscience
                Medicine
                Mental Health
                Neurology

                Life sciences
                Life sciences

                Comments

                Comment on this article