29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Maintenance of Paternal Methylation and Repression of the Imprinted H19 Gene Requires MBD3

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division.

          Author Summary

          Genomic imprinting is a specialized system of gene regulation whereby only one copy of a gene is used, either the maternal or the paternal copy. Misregulation of imprinting in humans results in developmental disorders such as Beckwith-Wiedemann Syndrome, and is implicated in many cancers. Study of imprinted genes in mice can lead to a greater understanding of these diseases as well as insight into gene regulation. Many imprinted genes are associated with methylation on the silenced allele. The imprinted gene H19 is maternally expressed and paternally methylated in a region upstream of the promoter known as the differentially methylated domain. This region is required for proper imprinted expression of H19 and its upstream imprinted neighbor Igf2. Our studies have explored the requirement for methyl-CpG binding protein 3 (MBD3) in silencing of the paternal allele. MBD3 is known to be part of a repressive complex that resides at silenced genes. In our experiments, we have shown that MBD3 is required for imprinting of H19, and is also required for the maintenance of methylation on the paternal allele. Finally, the MBD3 protein can be found at the differentially methylated domain. The identification of a protein required for silencing of the paternal allele of H19 is an important step in understanding regulation of this gene.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Role for DNA methylation in genomic imprinting.

          The paternal and maternal genomes are not equivalent and both are required for mammalian development. The difference between the parental genomes is believed to be due to gamete-specific differential modification, a process known as genomic imprinting. The study of transgene methylation has shown that methylation patterns can be inherited in a parent-of-origin-specific manner, suggesting that DNA methylation may play a role in genomic imprinting. The functional significance of DNA methylation in genomic imprinting was strengthened by the recent finding that CpG islands (or sites) in three imprinted genes, H19, insulin-like growth factor 2 (Igf-2), and Igf-2 receptor (Igf-2r), are differentially methylated depending on their parental origin. We have examined the expression of these three imprinted genes in mutant mice that are deficient in DNA methyltransferase activity. We report here that expression of all three genes was affected in mutant embryos: the normally silent paternal allele of the H19 gene was activated, whereas the normally active paternal allele of the Igf-2 gene and the active maternal allele of the Igf-2r gene were repressed. Our results demonstrate that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and characterization of a family of mammalian methyl-CpG binding proteins.

            Methylation at the DNA sequence 5'-CpG is required for mouse development. MeCP2 and MBD1 (formerly PCM1) are two known proteins that bind specifically to methylated DNA via a related amino acid motif and that can repress transcription. We describe here three novel human and mouse proteins (MBD2, MBD3, and MBD4) that contain the methyl-CpG binding domain. MBD2 and MBD4 bind specifically to methylated DNA in vitro. Expression of MBD2 and MBD4 tagged with green fluorescent protein in mouse cells shows that both proteins colocalize with foci of heavily methylated satellite DNA. Localization is disrupted in cells that have greatly reduced levels of CpG methylation. MBD3 does not bind methylated DNA in vivo or in vitro. MBD1, MBD2, MBD3, and MBD4 are expressed in somatic tissues, but MBD1 and MBD2 expression is reduced or absent in embryonic stem cells which are known to be deficient in MeCP1 activity. The data demonstrate that MBD2 and MBD4 bind specifically to methyl-CpG in vitro and in vivo and are therefore likely to be mediators of the biological consequences of the methylation signal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parental imprinting of the mouse insulin-like growth factor II gene.

              We are studying mice that carry a targeted disruption of the gene encoding insulin-like growth factor II (IGF-II). Transmission of this mutation through the male germline results in heterozygous progeny that are growth deficient. In contrast, when the disrupted gene is transmitted maternally, the heterozygous offspring are phenotypically normal. Therefore, the difference in growth phenotypes depends on the type of gamete contributing the mutated allele. Homozygous mutants are indistinguishable in appearance from growth-deficient heterozygous siblings. Nuclease protection and in situ hybridization analyses of the transcripts from the wild-type and mutated alleles indicate that only the paternal allele is expressed in embryos, while the maternal allele is silent. An exception is the choroid plexus and leptomeninges, where both alleles are transcriptionally active. These results demonstrate that IGF-II is indispensable for normal embryonic growth and that the IGF-II gene is subject to tissue-specific parental imprinting.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2007
                17 August 2007
                29 June 2007
                : 3
                : 8
                : e137
                Affiliations
                [1 ] Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
                [2 ] Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                University of Cambridge, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: bartolom@ 123456mail.med.upenn.edu
                Article
                07-PLGE-RA-0005R6 plge-03-08-09
                10.1371/journal.pgen.0030137
                1950162
                17708683
                b593c325-a6f8-4de5-bc78-7bbc95fc3e8f
                Copyright: © 2007 Reese et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 January 2007
                : 28 June 2007
                Page count
                Pages: 11
                Categories
                Research Article
                Genetics and Genomics
                Mus (Mouse)
                Custom metadata
                Reese KJ, Lin S, Verona RI, Schultz RM, Bartolomei MS (2007) Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet 3(8): e137. doi: 10.1371/journal.pgen.0030137

                Genetics
                Genetics

                Comments

                Comment on this article