12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Host-guest motifs are likely the most recognizable manifestation of supramolecular chemistry. These complexes are characterized by the organization of small molecules on the basis of preferential association of a guest within the portal of a host. In the context of their therapeutic use, the primary application of these complexes has been as excipients which enhance the solubility or improve the stability of drug formulations, primarily in a vial. However, there may be opportunities to go significantly beyond such a role and leverage key features of the affinity, specificity, and dynamics of the interaction itself toward “smarter” therapeutic designs. One approach in this regard would seek stimuli-responsive host-guest recognition, wherein a complex forms in a manner that is sensitive to, or can be governed by, externally applied triggers, disease-specific proteins and analytes, or the presence of a competing guest. This review will highlight the general and phenomenological design considerations governing host-guest recognition and the specific types of chemistry which have been used and are available for different applications. Finally, a discussion of the molecular engineering and design approaches which enable sensitivity to a variety of different stimuli are highlighted. Ultimately, these molecular-scale approaches offer an assortment of new chemistry and material design tools toward improving precision in drug delivery.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Mesoporous silica nanoparticles in biomedical applications.

          This tutorial review provides an outlook on nanomaterials that are currently being used for theranostic purposes, with a special focus on mesoporous silica nanoparticle (MSNP) based materials. MSNPs with large surface area and pore volume can serve as efficient carriers for various therapeutic agents. The functionalization of MSNPs with molecular, supramolecular or polymer moieties, provides the material with great versatility while performing drug delivery tasks, which makes the delivery process highly controllable. This emerging area at the interface of chemistry and the life sciences offers a broad palette of opportunities for researchers with interests ranging from sol-gel science, the fabrication of nanomaterials, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review

            Clinical trials are time consuming, expensive, and often burdensome on patients. Clinical trials can fail for many reasons. This survey reviews many of these reasons and offers insights on opportunities for improving the likelihood of creating and executing successful clinical trials. Literature from the past 30 years was reviewed for relevant data. Common patterns in reported successful trials are identified, including factors regarding the study site, study coordinator/investigator, and the effects on participating patients. Specific instances where artificial intelligence can help improve clinical trials are identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry.

              In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2019
                15 May 2019
                : 9
                : 11
                : 3017-3040
                Affiliations
                Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
                Author notes
                ✉ Corresponding author: Matthew J. Webber, mwebber@ 123456nd.edu

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov09p3017
                10.7150/thno.31913
                6567965
                31244940
                b5389010-bd7f-499c-afc1-e93d543bb360
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 30 November 2018
                : 27 March 2019
                Categories
                Review

                Molecular medicine
                crown ether,porphyrin,calixarenes,pillararenes,cyclodextrin,cucurbituril,rotaxane
                Molecular medicine
                crown ether, porphyrin, calixarenes, pillararenes, cyclodextrin, cucurbituril, rotaxane

                Comments

                Comment on this article