34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anticancer Activity of Metal Complexes: Involvement of Redox Processes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

          Related collections

          Most cited references390

          • Record: found
          • Abstract: found
          • Article: found

          IDH1 and IDH2 mutations in gliomas.

          A recent genomewide mutational analysis of glioblastomas (World Health Organization [WHO] grade IV glioma) revealed somatic mutations of the isocitrate dehydrogenase 1 gene (IDH1) in a fraction of such tumors, most frequently in tumors that were known to have evolved from lower-grade gliomas (secondary glioblastomas). We determined the sequence of the IDH1 gene and the related IDH2 gene in 445 central nervous system (CNS) tumors and 494 non-CNS tumors. The enzymatic activity of the proteins that were produced from normal and mutant IDH1 and IDH2 genes was determined in cultured glioma cells that were transfected with these genes. We identified mutations that affected amino acid 132 of IDH1 in more than 70% of WHO grade II and III astrocytomas and oligodendrogliomas and in glioblastomas that developed from these lower-grade lesions. Tumors without mutations in IDH1 often had mutations affecting the analogous amino acid (R172) of the IDH2 gene. Tumors with IDH1 or IDH2 mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type IDH genes. Each of four tested IDH1 and IDH2 mutations reduced the enzymatic activity of the encoded protein. Mutations of NADP(+)-dependent isocitrate dehydrogenases encoded by IDH1 and IDH2 occur in a majority of several types of malignant gliomas. 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?

            Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutathione: overview of its protective roles, measurement, and biosynthesis.

              This review is the introduction to a special issue concerning, glutathione (GSH), the most abundant low molecular weight thiol compound synthesized in cells. GSH plays critical roles in protecting cells from oxidative damage and the toxicity of xenobiotic electrophiles, and maintaining redox homeostasis. Here, the functions and GSH and the sources of oxidants and electrophiles, the elimination of oxidants by reduction and electrophiles by conjugation with GSH are briefly described. Methods of assessing GSH status in the cells are also described. GSH synthesis and its regulation are addressed along with therapeutic approaches for manipulating GSH content that have been proposed. The purpose here is to provide a brief overview of some of the important aspects of glutathione metabolism as part of this special issue that will provide a more comprehensive review of the state of knowledge regarding this essential molecule.
                Bookmark

                Author and article information

                Journal
                Antioxidants & Redox Signaling
                Antioxidants & Redox Signaling
                Mary Ann Liebert Inc
                1523-0864
                1557-7716
                August 15 2011
                August 15 2011
                : 15
                : 4
                : 1085-1127
                Affiliations
                [1 ]Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria.
                [2 ]Comprehensive Cancer Center of the Medical University Vienna, Vienna, Austria.
                [3 ]Research Platform “Translational Cancer Therapy Research”, Vienna, Austria.
                [4 ]Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria.
                Article
                10.1089/ars.2010.3663
                3371750
                21275772
                b49caaf8-e6e7-44dc-804a-495b3a33514b
                © 2011
                History

                Comments

                Comment on this article