17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A genome-wide screen identifies 17 regulatory hubs that modulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion.

          Abstract

          Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca 2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca 2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Adherens junctions: from molecules to morphogenesis.

          How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin-catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin-catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms controlling actin filament dynamics in nonmuscle cells.

            We review how motile cells regulate actin filament assembly at their leading edge. Activation of cell surface receptors generates signals (including activated Rho family GTPases) that converge on integrating proteins of the WASp family (WASp, N-WASP, and Scar/WAVE). WASP family proteins stimulate Arp2/3 complex to nucleate actin filaments, which grow at a fixed 70 degrees angle from the side of pre-existing actin filaments. These filaments push the membrane forward as they grow at their barbed ends. Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp2/3 complex must be supplied continuously to keep the network growing. Hydrolysis of ATP bound to polymerized actin followed by phosphate dissociation marks older filaments for depolymerization by ADF/cofilins. Profilin catalyzes exchange of ADP for ATP, recycling actin back to a pool of unpolymerized monomers bound to profilin and thymosin-beta 4 that is poised for rapid elongation of new barbed ends.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The WASP-WAVE protein network: connecting the membrane to the cytoskeleton.

              Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                20 January 2014
                : 204
                : 2
                : 265-279
                Affiliations
                [1 ]Department of Biology and [2 ]Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
                [3 ]The Howard Hughes Medical Institute and [4 ]Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
                Author notes
                Correspondence to W. James Nelson: wjnelson@ 123456stanford.edu
                Article
                201306082
                10.1083/jcb.201306082
                3897182
                24446484
                b46dd469-8780-45c4-9c7c-7563a70a6ad0
                © 2014 Toret et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 14 June 2013
                : 11 September 2013
                Categories
                Research Articles
                Tools

                Cell biology
                Cell biology

                Comments

                Comment on this article