15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transfer RNA (tRNA)-derived small RNAs (tsRNAs) have been found to play important roles in the occurrence and development of cancers. However, the tsRNA profile in gastric cancer is unknown. In this study, we aimed to identify the global tsRNA profile in plasma from gastric cancer patients and elucidate the role of tRF-33-P4R8YP9LON4VDP in gastric cancer. Differentially expressed tsRNAs in the plasma of gastric cancer patients and healthy controls were investigated using RNA sequencing. The expression levels of tRF-33-P4R8YP9LON4VDP in the plasma of gastric cancer patients, healthy controls and gastric cancer cell lines were first detected by quantitative reverse transcription-polymerase chain reaction. The effects of tRF-33-P4R8YP9LON4VDP overexpression or downregulation in gastric cancer cells on proliferation, migration, apoptosis, and cell cycle were analyzed using the Cell Counting Kit‐8, scratch assay, Transwell assay, and flow cytometry, respectively. There were 21 upregulated and 46 downregulated tsRNAs found in plasma from gastric cancer patients. The significantly upregulated tsRNAs included tRF-18-S3M83004, tRF-31-PNR8YP9LON4VD, tRF-19-3L7L73JD, tRF-33-P4R8YP9LON4VDP, tRF-31-PER8YP9LON4VD, tRF-18-MBQ4NKDJ, and tRF-31-PIR8YP9LON4VD. The significantly downregulated tsRNAs included tRF-41-YDLBRY73W0K5KKOVD, tRF-18-07QSNHD2, tRF-28-86J8WPMN1E0J, tRF-29-86V8WPMN1EJ3, tRF-31-6978WPRLXN4VE, tRF-30-MIF91SS2P46I, tRF-26-MI7O3B1NR8E, tRF-30-RRJ89O9NF5W8, tRF-26-XIP2801MK8E, and tRF-35-V0J8O9YEKPRS93, In vitro studies showed that tRF-33-P4R8YP9LON4VDP inhibited proliferation of gastric cancer cells. In conclusion, tsRNAs such as tRF-33-P4R8YP9LON4VDP could serve as a novel diagnostic biomarker and target for gastric cancer therapeutics.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells.

            MicroRNAs (miRNAs) are emerging as important, albeit poorly characterized, regulators of biological processes. Key to further elucidation of their roles is the generation of more complete lists of their numbers and expression changes in different cell states. Here, we report a new method for surveying the expression of small RNAs, including microRNAs, using Illumina sequencing technology. We also present a set of methods for annotating sequences deriving from known miRNAs, identifying variability in mature miRNA sequences, and identifying sequences belonging to previously unidentified miRNA genes. Application of this approach to RNA from human embryonic stem cells obtained before and after their differentiation into embryoid bodies revealed the sequences and expression levels of 334 known plus 104 novel miRNA genes. One hundred seventy-one known and 23 novel microRNA sequences exhibited significant expression differences between these two developmental states. Owing to the increased number of sequence reads, these libraries represent the deepest miRNA sampling to date, spanning nearly six orders of magnitude of expression. The predicted targets of those miRNAs enriched in either sample shared common features. Included among the high-ranked predicted gene targets are those implicated in differentiation, cell cycle control, programmed cell death, and transcriptional regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel class of small RNAs: tRNA-derived RNA fragments (tRFs).

              New types of small RNAs distinct from microRNAs (miRNAs) are progressively being discovered in various organisms. In order to discover such novel small RNAs, a library of 17- to 26-base-long RNAs was created from prostate cancer cell lines and sequenced by ultra-high-throughput sequencing. A significant number of the sequences are derived from precise processing at the 5' or 3' end of mature or precursor tRNAs to form three series of tRFs (tRNA-derived RNA fragments): the tRF-5, tRF-3, and tRF-1 series. These sequences constitute a class of short RNAs that are second most abundant to miRNAs. Northern hybridization, quantitative RT-PCR, and splinted ligation assays independently measured the levels of at least 17 tRFs. To demonstrate the biological importance of tRFs, we further investigated tRF-1001, derived from the 3' end of a Ser-TGA tRNA precursor transcript that is not retained in the mature tRNA. tRF-1001 is expressed highly in a wide range of cancer cell lines but much less in tissues, and its expression in cell lines was tightly correlated with cell proliferation. siRNA-mediated knockdown of tRF-1001 impaired cell proliferation with the specific accumulation of cells in G2, phenotypes that were reversed specifically by cointroducing a synthetic 2'-O-methyl tRF-1001 oligoribonucleotide resistant to the siRNA. tRF-1001 is generated in the cytoplasm by tRNA 3'-endonuclease ELAC2, a prostate cancer susceptibility gene. Our data suggest that tRFs are not random by-products of tRNA degradation or biogenesis, but an abundant and novel class of short RNAs with precise sequence structure that have specific expression patterns and specific biological roles.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2021
                4 February 2021
                : 18
                : 7
                : 1570-1579
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
                [2 ]Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine.
                Author notes
                ✉ Corresponding author: E-mail: guojunming@ 123456nbu.edu.cn ; Tel: +86-574-87600758; Fax: +86-574-87608638

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv18p1570
                10.7150/ijms.53220
                7976566
                33746573
                b31ce066-9f3c-41d2-87f0-e6095092440b
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 17 September 2020
                : 17 January 2021
                Categories
                Research Paper

                Medicine
                trna-derived small rnas (tsrnas),trna-derived fragment (trf),gastric cancer,trf-33-p4r8yp9lon4vdp,proliferation.

                Comments

                Comment on this article