1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-molecule conductance measurements for 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) may offer unique insight into the bent-to-planar photocycle between the ground and excited states. Herein, we employ DPAC derivative DPAC-SMe as the molecular prototype to fabricate single-molecule junctions using the scanning tunneling microscope break junction technique and explore photoconductance dependence on the excited-state structural/electronic changes. We find up to ∼200% conductance enhancement of DPAC-SMe under continuous 340 nm light irradiation than that without irradiation, while photoconductance disappears in the case where structural evolution of the DPAC-SMe is halted through macrocyclization. The in situ conductance modulation as pulsed 340 nm light irradiation is monitored in the DPAC-SMe-based junctions alone, suggesting that the photoconductance of DPAC-SMe stems from photoinduced intramolecular planarization. Theoretical calculations reveal that the photoinduced structural evolution brings about a significant redistribution of the electron cloud density, which leads to the appearance of Fano resonance, resulting in enhanced conductance through the DPAC-SMe-fabricated junctions. This work provides evidence of bent-to-planar photocycle-induced conductance differences at the single-molecule level, offering a tailored approach for tuning the charge transport characteristics of organic photoelectronic devices.

          Related collections

          Author and article information

          Journal
          J Am Chem Soc
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          1520-5126
          0002-7863
          Jun 08 2022
          : 144
          : 22
          Affiliations
          [1 ] Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
          [2 ] State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
          Article
          10.1021/jacs.2c03671
          35611861
          b2d4496c-af46-4de2-b884-a16943572dff
          History

          Comments

          Comment on this article