2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biobased: Biostimulants and biogenic nanoparticles enter the scene

      ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: not found
          • Article: not found

          Agricultural uses of plant biostimulants

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biostimulants in Plant Science: A Global Perspective

            This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as “a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds.” The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a “mode of action” for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Applications of Nanotechnology in Plant Growth and Crop Protection: A Review

              In the era of climate change, global agricultural systems are facing numerous, unprecedented challenges. In order to achieve food security, advanced nano-engineering is a handy tool for boosting crop production and assuring sustainability. Nanotechnology helps to improve agricultural production by increasing the efficiency of inputs and minimizing relevant losses. Nanomaterials offer a wider specific surface area to fertilizers and pesticides. In addition, nanomaterials as unique carriers of agrochemicals facilitate the site-targeted controlled delivery of nutrients with increased crop protection. Due to their direct and intended applications in the precise management and control of inputs (fertilizers, pesticides, herbicides), nanotools, such as nanobiosensors, support the development of high-tech agricultural farms. The integration of biology and nanotechnology into nonosensors has greatly increased their potential to sense and identify the environmental conditions or impairments. In this review, we summarize recent attempts at innovative uses of nanotechnologies in agriculture that may help to meet the rising demand for food and environmental sustainability.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                August 2023
                August 2023
                : 885
                : 163912
                Article
                10.1016/j.scitotenv.2023.163912
                37150469
                b2b24c04-818d-45cf-afe5-6ec651961d26
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article