55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment

      , , ,
      Journal of The Royal Society Interface
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer remains one of the leading causes of death, albeit enormous efforts to cure the disease. To overcome the major challenges in cancer therapy, we need to have a better understanding of the tumour microenvironment (TME), as well as a more effective means to screen anti-cancer drug leads; both can be achieved using advanced technologies, including the emerging tumour-on-a-chip technology. Here, we review the recent development of the tumour-on-a-chip technology, which integrates microfluidics, microfabrication, tissue engineering and biomaterials research, and offers new opportunities for building and applying functional three-dimensional in vitro human tumour models for oncology research, immunotherapy studies and drug screening. In particular, tumour-on-a-chip microdevices allow well-controlled microscopic studies of the interaction among tumour cells, immune cells and cells in the TME, of which simple tissue cultures and animal models are not amenable to do. The challenges in developing the next-generation tumour-on-a-chip technology are also discussed.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional bioprinting of thick vascularized tissues.

            The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrospun nanofibrous structure: A novel scaffold for tissue engineering

              The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L-lactide-co-glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue-engineering applications. Electrospinning is a process whereby ultra-fine fibers are formed in a high-voltage electrostatic field. The electrospun structure, composed of PLGA fibers ranging from 500 to 800 nm in diameter, features a morphologic similarity to the extracellular matrix (ECM) of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, and effective mechanical properties. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell-matrix interaction within the cellular construct supports the active biocompatibility of the structure. The electrospun nanofibrous structure is capable of supporting cell attachment and proliferation. Cells seeded on this structure tend to maintain phenotypic shape and guided growth according to nanofiber orientation. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique architecture, which acts to support and guide cell growth. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 613-621, 2002
                Bookmark

                Author and article information

                Journal
                Journal of The Royal Society Interface
                J. R. Soc. Interface
                The Royal Society
                1742-5689
                1742-5662
                June 21 2017
                June 21 2017
                : 14
                : 131
                : 20170137
                Article
                10.1098/rsif.2017.0137
                5493797
                28637915
                b2a7d22d-2f20-42ce-bb54-f4706f128a37
                © 2017

                http://royalsocietypublishing.org/licence

                History

                Comments

                Comment on this article