58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Key Points

          • Diabetic complications — the long-term damage to various organ systems — are a great cause of mortality and morbidity in both type 1 and type 2 diabetes. There are currently few therapeutic options to prevent or ameliorate these complications.

          • High blood glucose levels and the subsequent metabolic consequences of hyperglycaemia are widely considered the primary event that initiates diabetic complications, although there is accumulating evidence that impaired insulin signalling arising from insulin deficiency and insulin resistance may also have a pathogenic role.

          • Vascular dysfunction is a prominent complication of diabetes that is widely held to underlie damage to organ systems such as the macrovasculature, kidneys, eyes and nerves. Other consequences of diabetes, such as dyslipidaemia and hypertension, are key modifiers of vascular injury and act as accelerators of diabetic complications.

          • Numerous pathogenic mechanisms, including increased polyol pathway flux and mitochondrial activity, activation of protein kinase C and NADPH oxidase and signalling through the receptor for advanced glycation end products (RAGE) pathway, seem to form a central pathogenic axis that is common to most, if not all, of the complications of diabetes. These disorders all promote excess production of pro-oxidative molecules. Organ-specific mechanisms, such as diminished growth factor support and repair pathway activation, must also be considered.

          • Few animal models of diabetic complications faithfully reflect the advanced stages of organ pathology seen in humans. Current models can be viewed as potentially illustrating early biochemical and functional disorders of diabetes that ultimately lead to advanced pathology. New animal models are being developed using both a reductionist approach for examining specific gene products of interest and also by combining diverse molecular and physiological risk factors.

          • Control of blood glucose levels and lipids remains the most meaningful approach for preventing diabetic complications. This strategy is likely to be complemented by a diverse range of more focused therapeutics that have emerged from mechanistic studies in animal models and which are currently in clinical development. Some of these, such as those targeting cardiovascular disease, have the potential to affect several diabetic complications, whereas others focus on intervening in organ-specific pathogenic mechanisms. It is probable that combination therapies aimed at the hyperglycaemia-driven pathogenic axis and also at organ-specific disorders will provide the most effective approach to treating the diverse complications of diabetes.

          Abstract

          Long-term diabetes increases the likelihood of developing complications such as macrovascular disease, nephropathy, retinopathy and neuropathy. This Review highlights the range of pathologies that are precipitated by hyperglycaemia and discusses recent developments in preclinical and clinical research for each of these complications.

          Abstract

          Long-term diabetes increases the likelihood of developing secondary damage to numerous systems, and these complications represent a substantial cause of morbidity and mortality. Establishing the causes of diabetes remains the key step towards eradicating the disease, but the prevention and amelioration of diabetic complications is equally important for the millions of individuals who already have the disease or are likely to develop it before prophylaxis or a cure become routinely available. In this Review, we focus on four common complications of diabetes, discuss the range of pathologies that are precipitated by hyperglycaemia and highlight emerging targets for therapeutic intervention.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia

          The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c–independent risk factor for diabetic complications. We show that transient hyperglycemia induces long-lasting activating epigenetic changes in the promoter of the nuclear factor κB (NF-κB) subunit p65 in aortic endothelial cells both in vitro and in nondiabetic mice, which cause increased p65 gene expression. Both the epigenetic changes and the gene expression changes persist for at least 6 d of subsequent normal glycemia, as do NF-κB–induced increases in monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 expression. Hyperglycemia-induced epigenetic changes and increased p65 expression are prevented by reducing mitochondrial superoxide production or superoxide-induced α-oxoaldehydes. These results highlight the dramatic and long-lasting effects that short-term hyperglycemic spikes can have on vascular cells and suggest that transient spikes of hyperglycemia may be an HbA1c–independent risk factor for diabetic complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial.

            Laser treatment for diabetic retinopathy is often associated with visual field reduction and other ocular side-effects. Our aim was to assess whether long-term lipid-lowering therapy with fenofibrate could reduce the progression of retinopathy and the need for laser treatment in patients with type 2 diabetes mellitus. The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study was a multinational randomised trial of 9795 patients aged 50-75 years with type 2 diabetes mellitus. Eligible patients were randomly assigned to receive fenofibrate 200 mg/day (n=4895) or matching placebo (n=4900). At each clinic visit, information concerning laser treatment for diabetic retinopathy-a prespecified tertiary endpoint of the main study-was gathered. Adjudication by ophthalmologists masked to treatment allocation defined instances of laser treatment for macular oedema, proliferative retinopathy, or other eye conditions. In a substudy of 1012 patients, standardised retinal photography was done and photographs graded with Early Treatment Diabetic Retinopathy Study (ETDRS) criteria to determine the cumulative incidence of diabetic retinopathy and its component lesions. Analyses were by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN64783481. Laser treatment was needed more frequently in participants with poorer glycaemic or blood pressure control than in those with good control of these factors, and in those with a greater burden of clinical microvascular disease, but the need for such treatment was not affected by plasma lipid concentrations. The requirement for first laser treatment for all retinopathy was significantly lower in the fenofibrate group than in the placebo group (164 [3.4%] patients on fenofibrate vs 238 [4.9%] on placebo; hazard ratio [HR] 0.69, 95% CI 0.56-0.84; p=0.0002; absolute risk reduction 1.5% [0.7-2.3]). In the ophthalmology substudy, the primary endpoint of 2-step progression of retinopathy grade did not differ significantly between the two groups overall (46 [9.6%] patients on fenofibrate vs 57 [12.3%] on placebo; p=0.19) or in the subset of patients without pre-existing retinopathy (43 [11.4%] vs 43 [11.7%]; p=0.87). By contrast, in patients with pre-existing retinopathy, significantly fewer patients on fenofibrate had a 2-step progression than did those on placebo (three [3.1%] patients vs 14 [14.6%]; p=0.004). An exploratory composite endpoint of 2-step progression of retinopathy grade, macular oedema, or laser treatments was significantly lower in the fenofibrate group than in the placebo group (HR 0.66, 95% CI 0.47-0.94; p=0.022). Treatment with fenofibrate in individuals with type 2 diabetes mellitus reduces the need for laser treatment for diabetic retinopathy, although the mechanism of this effect does not seem to be related to plasma concentrations of lipids.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Diabetic retinopathy.

                Bookmark

                Author and article information

                Contributors
                ncalcutt@ucsd.edu
                Journal
                Nat Rev Drug Discov
                Nat Rev Drug Discov
                Nature Reviews. Drug Discovery
                Nature Publishing Group UK (London )
                1474-1776
                1474-1784
                2009
                : 8
                : 5
                : 417-430
                Affiliations
                [1 ]GRID grid.266100.3, ISNI 0000 0001 2107 4242, Department of Pathology, , University of California, San Diego, ; La Jolla, 92093 California USA
                [2 ]GRID grid.1051.5, ISNI 0000 0000 9760 5620, Diabetes Division, , Baker IDI Heart and Diabetes Institute, ; Melbourne, 3004 Victoria Australia
                [3 ]GRID grid.67105.35, ISNI 0000 0001 2164 3847, Department of Medicine, , Case Western Reserve University, ; 434 Biomedical Research Building, 2109 Adelbert Road, Cleveland, 441064951 Ohio USA
                [4 ]GRID grid.21729.3f, ISNI 0000000419368729, College of Physicians and Surgeons, Columbia University, ; 630 West 168th Street, P&S 17401, New York, 10032 New York USA
                Article
                BFnrd2476
                10.1038/nrd2476
                7097138
                19404313
                b2a4ac51-1aed-4ca5-9246-5efbb4489664
                © Nature Publishing Group 2009

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2009

                Comments

                Comment on this article