14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The influence of antibiotics and dietary components on gut microbiota

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota acts as a real organ. It exerts important metabolic functions, and regulates the inflammatory response by stimulating the immune system. Gut microbial imbalance (dysbiosis) has been linked to important human diseases and inflammation-related disorders. The symbiotic interactions between resident microorganisms and the gastrointestinal tract significantly contribute to maintaining gut homeostasis. The present review summarizes our knowledge regarding the impact of different antibiotics causing such long-term consequences as decreased microbial diversity, modulation of the Bacteroidetes/Firmicutes ratio, Clostridium difficile overgrowth, and increased expansion of the opportunistic pathogens Salmonella typhimurium, Escherichia spp., and Klebsiella spp. Also, food additives, such as emulsifiers and artificial sweeteners, which are meant to reduce the risk of obesity and diabetes, may actually increase the risk of diseases due to microbial alterations. On the other hand, dietary components such as polyphenols, omega-3 acids or curcumin may positively affect gut microbiota composition.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Benefits of polyphenols on gut microbiota and implications in human health.

          The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship "polyphenols ↔ microbiota" are still poorly understood. Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fecal microbiota transplantation: in perspective.

            There has been increasing interest in understanding the role of the human gut microbiome to elucidate the therapeutic potential of its manipulation. Fecal microbiota transplantation (FMT) is the administration of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition and confer a health benefit. FMT has been used to successfully treat recurrent Clostridium difficile infection. There are preliminary indications to suggest that it may also carry therapeutic potential for other conditions such as inflammatory bowel disease, obesity, metabolic syndrome, and functional gastrointestinal disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics, microbiota, and immune defense.

              The gastrointestinal tract microbiota contributes to the development and differentiation of the mammalian immune system. The composition of the microbiota affects immune responses and affects susceptibility to infection by intestinal pathogens and development of allergic and inflammatory bowel diseases. Antibiotic administration, while facilitating clearance of targeted infections, also perturbs commensal microbial communities and decreases host resistance to antibiotic-resistant microbes. Here, we review recent advances that begin to define the interactions between complex intestinal microbial populations and the mammalian immune system and how this relation is perturbed by antibiotic administration. We further discuss how antibiotic-induced disruption of the microbiota and immune homeostasis can lead to disease and we review strategies to restore immune defenses during antibiotic administration. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Prz Gastroenterol
                Prz Gastroenterol
                PG
                Przegla̜d Gastroenterologiczny
                Termedia Publishing House
                1895-5770
                1897-4317
                25 May 2018
                2018
                : 13
                : 2
                : 85-92
                Affiliations
                Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, Wroclaw, Poland
                Author notes
                Address for correspondence: Ruth K. Dudek-Wicher, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 211 Borowska St, 50-556 Wroclaw, Poland. phone: +48 606 763 589. e-mail: r.dudek.wicher@ 123456gmail.com
                Article
                32873
                10.5114/pg.2018.76005
                6040098
                30002765
                b25fd4bc-5729-40bc-b947-b6b0f50bd440
                Copyright: © 2018 Termedia Sp. z o. o.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.

                History
                : 20 November 2017
                : 24 April 2018
                Categories
                Review Paper

                microbiota,antibiotics,diet
                microbiota, antibiotics, diet

                Comments

                Comment on this article