21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-invasive methods to evaluate liver fibrosis in patients with non-alcoholic fatty liver disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-alcoholic Fatty Liver Disease (NAFLD) is a chronic liver disease that is strongly related to insulin resistance and metabolic syndrome, and it has become the most common liver disorder in developed countries. NAFLD embraces the full pathological process of three conditions: steatosis, non-alcoholic steatohepatitis, and finally, cirrhosis. As NAFLD progresses, symptoms will become increasingly severe as fibrosis develops. Therefore, evaluating the fibrosis stage is crucial for patients with NAFLD. A liver biopsy is currently considered the gold standard for staging fibrosis. However, due to the limitations of liver biopsy, non-invasive alternatives were extensively studied and validated in patients with NAFLD. The advantages of non-invasive methods include their high safety and convenience compared with other invasive approaches. This review introduces the non-invasive methods, summarizes their benefits and limitations, and assesses their diagnostic performance for NAFLD-induced fibrosis.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          NAFLD: a multisystem disease.

          Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries that is predicted to become also the most frequent indication for liver transplantation by 2030. Over the last decade, it has been shown that the clinical burden of NAFLD is not only confined to liver-related morbidity and mortality, but there is now growing evidence that NAFLD is a multisystem disease, affecting extra-hepatic organs and regulatory pathways. For example, NAFLD increases risk of type 2 diabetes mellitus (T2DM), cardiovascular (CVD) and cardiac diseases, and chronic kidney disease (CKD). Although the primary liver pathology in NAFLD affects hepatic structure and function to cause morbidity and mortality from cirrhosis, liver failure and hepatocellular carcinoma, the majority of deaths among NAFLD patients are attributable to CVD. This narrative review focuses on the rapidly expanding body of clinical evidence that supports the concept of NAFLD as a multisystem disease. The review discusses the factors involved in the progression of liver disease in NAFLD and the factors linking NAFLD with other extra-hepatic chronic diseases, such as T2DM, CVD, cardiac diseases and CKD. The review will not discuss NAFLD treatments as these are discussed elsewhere in this issue of the Journal. For this review, PubMed was searched for articles using the keywords "non-alcoholic fatty liver disease" or "fatty liver" combined with "diabetes", "cardiovascular (or cardiac) disease", "cardiovascular mortality" or "chronic kidney disease" between 1990 and 2014. Articles published in languages other than English were excluded.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD.

            Patients with nonalcoholic fatty liver disease (NAFLD) and advanced liver fibrosis are at the highest risk for progressing to end-stage liver disease. We constructed and validated a scoring system consisting of routinely measured and readily available clinical and laboratory data to separate NAFLD patients with and without advanced fibrosis. A total of 733 patients with NAFLD confirmed by liver biopsy were divided into 2 groups to construct (n = 480) and validate (n = 253) a scoring system. Routine demographic, clinical, and laboratory variables were analyzed by multivariate modeling to predict presence or absence of advanced fibrosis. Age, hyperglycemia, body mass index, platelet count, albumin, and AST/ALT ratio were independent indicators of advanced liver fibrosis. A scoring system with these 6 variables had an area under the receiver operating characteristic curve of 0.88 and 0.82 in the estimation and validation groups, respectively. By applying the low cutoff score (-1.455), advanced fibrosis could be excluded with high accuracy (negative predictive value of 93% and 88% in the estimation and validation groups, respectively). By applying the high cutoff score (0.676), the presence of advanced fibrosis could be diagnosed with high accuracy (positive predictive value of 90% and 82% in the estimation and validation groups, respectively). By applying this model, a liver biopsy would have been avoided in 549 (75%) of the 733 patients, with correct prediction in 496 (90%). a simple scoring system accurately separates patients with NAFLD with and without advanced fibrosis, rendering liver biopsy for identification of advanced fibrosis unnecessary in a substantial proportion of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease

              Nonalcoholic fatty liver disease (NAFLD) is estimated to afflict approximately 1 billion individuals worldwide. In a subset of NAFLD patients, who have the progressive form of NAFLD termed nonalcoholic steatohepatitis (NASH), it can progress to advanced fibrosis, cirrhosis, hepatocellular carcinoma, and liver-related morbidity and mortality. NASH is typically characterized by a specific pattern on liver histology, including steatosis, lobular inflammation, and ballooning with or without peri-sinusoidal fibrosis. Thus, key issues in NAFLD patients are the differentiation of NASH from simple steatosis and identification of advanced hepatic fibrosis. Until now, liver biopsy has been the gold standard for identifying these 2 critical end points, but has well-known limitations, including invasiveness; rare but potentially life-threatening complications; poor acceptability; sampling variability; and cost. Furthermore, due to the epidemic proportion of individuals with NAFLD worldwide, liver biopsy evaluation is impractical, and noninvasive assessment for the diagnosis of NASH and fibrosis is needed. Although much of the work remains to be done in establishing cost-effective strategies for screening for NASH, advanced fibrosis, and cirrhosis, in this review, we summarize the current state of the noninvasive assessment of liver disease in NAFLD, and we provide an expert synthesis of how these noninvasive tools could be utilized in clinical practice. Finally, we also list the key areas of research priorities in this area to move forward clinical practice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                14 December 2022
                2022
                : 13
                : 1046497
                Affiliations
                [1] 1 The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
                [2] 2 Liver Disease Center , Qinhuangdao Third Hospital , Qinhuangdao, China
                Author notes

                Edited by: Gao Xuejuan, Jinan University, China

                Reviewed by: Lingli He, Harvard University, United States

                Matthias J. Bahr, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Germany

                Ka Zhang, Sun Yat-sen University, China

                *Correspondence: Xiaojie Lu, 189@ 123456whu.edu.cn ; Lihua Cao, clh2777@ 123456163.com
                [ † ]

                These authors share first authorship

                This article was submitted to Metabolic Physiology, a section of the journal Frontiers in Physiology

                Article
                1046497
                10.3389/fphys.2022.1046497
                9794751
                36589424
                b25cee9d-42c5-446a-b52e-eea7b13c7280
                Copyright © 2022 Wang, Qin, Sun, Li, Cao and Lu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 September 2022
                : 15 November 2022
                Categories
                Physiology
                Review

                Anatomy & Physiology
                nafld,non-invasive diagnosis,liver fibrosis,biomarkers,prediction
                Anatomy & Physiology
                nafld, non-invasive diagnosis, liver fibrosis, biomarkers, prediction

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content496

                Cited by5

                Most referenced authors1,499