23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Intronic SINE Insertion in FAM161A that Causes Exon-Skipping Is Associated with Progressive Retinal Atrophy in Tibetan Spaniels and Tibetan Terriers

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 19 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome-wide association with 22 Tibetan Spaniel PRA cases and 10 controls, we identified a novel PRA locus, PRA3, on CFA10 (p raw = 2.01×10 −5, p genome = 0.014), where a 3.8 Mb region was homozygous within 12 cases. Using targeted next generation sequencing, a short interspersed nuclear element insertion was identified near a splice acceptor site in an intron of a provocative gene, FAM161A. Analysis of mRNA from an affected dog revealed that the SINE causes exon skipping, resulting in a frame shift, leading to a downstream premature termination codon and possibly a truncated protein product. This mutation segregates with the disease in 22 out of 35 cases tested (63%). Of the PRA controls, none are homozygous for the mutation, 15% carry the mutation and 85% are homozygous wildtype. This mutation was also identified in Tibetan Terriers, although our results indicate that PRA is genetically heterogeneous in both Tibetan Spaniels and Tibetan Terriers.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene.

          Narcolepsy is a disabling sleep disorder affecting humans and animals. It is characterized by daytime sleepiness, cataplexy, and striking transitions from wakefulness into rapid eye movement (REM) sleep. In this study, we used positional cloning to identify an autosomal recessive mutation responsible for this sleep disorder in a well-established canine model. We have determined that canine narcolepsy is caused by disruption of the hypocretin (orexin) receptor 2 gene (Hcrtr2). This result identifies hypocretins as major sleep-modulating neurotransmitters and opens novel potential therapeutic approaches for narcoleptic patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perspective on genes and mutations causing retinitis pigmentosa.

            Exceptional progress has been made during the past two decades in identifying genes causing inherited retinal diseases such as retinitis pigmentosa. An inescapable consequence is that the relationship between genes, mutations, and clinical findings has become very complex. Success in identifying the causes of inherited retinal diseases has many implications, including a better understanding of the biological basis of vision and insights into the processes involved in retinal pathology. From a clinical point of view, there are two important questions arising from these developments: where do we stand today in finding disease-causing mutations in affected individuals, and what are the implications of this information for clinical practice? This perspective addresses these questions specifically for retinitis pigmentosa, but the observations apply generally to other forms of inherited eye disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new DNA sequence assembly program.

              We describe the Genome Assembly Program (GAP), a new program for DNA sequence assembly. The program is suitable for large and small projects, a variety of strategies and can handle data from a range of sequencing instruments. It retains the useful components of our previous work, but includes many novel ideas and methods. Many of these methods have been made possible by the program's completely new, and highly interactive, graphical user interface. The program provides many visual clues to the current state of a sequencing project and allows users to interact in intuitive and graphical ways with their data. The program has tools to display and manipulate the various types of data that help to solve and check difficult assemblies, particularly those in repetitive genomes. We have introduced the following new displays: the Contig Selector, the Contig Comparator, the Template Display, the Restriction Enzyme Map and the Stop Codon Map. We have also made it possible to have any number of Contig Editors and Contig Joining Editors running simultaneously even on the same contig. The program also includes a new 'Directed Assembly' algorithm and routines for automatically detecting unfinished segments of sequence, to which it suggests experimental solutions.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                4 April 2014
                : 9
                : 4
                : e93990
                Affiliations
                [1]Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
                University of Sydney, Australia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LMD CSM. Performed the experiments: LMD. Analyzed the data: LMD. Contributed reagents/materials/analysis tools: CSM. Wrote the paper: LMD. Provided input in the writing of the manuscript: CSM.

                Article
                PONE-D-14-01621
                10.1371/journal.pone.0093990
                3976383
                24705771
                b1975324-0cca-44fe-976c-6f886449ac1e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 January 2014
                : 10 March 2014
                Page count
                Pages: 12
                Funding
                The work was supported by the the Petplan Charitable Trust (grant no 10-06; http://www.petplantrust.org/) and by private donations from dog breeders and owners. The Kennel Club Genetics Centre at the Animal Health Trust is maintained by funding from the Kennel Club Charitable Trust ( http://www.thekennelclub.org.uk/our-resources/kennel-club-charitable-trust/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genome-Wide Association Studies
                Genetics
                Animal Genetics
                Gene Identification and Analysis
                Genetics of Disease
                Heredity
                Molecular Genetics
                Veterinary Science
                Veterinary Diseases
                Medicine and Health Sciences
                Ophthalmology
                Retinal Disorders
                Research and Analysis Methods
                Model Organisms
                Animal Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article