493
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pyrosequencing of Antibiotic-Contaminated River Sediments Reveals High Levels of Resistance and Gene Transfer Elements

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          ISfinder: the reference centre for bacterial insertion sequences

          ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative metagenomics of microbial communities.

            The species complexity of microbial communities and challenges in culturing representative isolates make it difficult to obtain assembled genomes. Here we characterize and compare the metabolic capabilities of terrestrial and marine microbial communities using largely unassembled sequence data obtained by shotgun sequencing DNA isolated from the various environments. Quantitative gene content analysis reveals habitat-specific fingerprints that reflect known characteristics of the sampled environments. The identification of environment-specific genes through a gene-centric comparative analysis presents new opportunities for interpreting and diagnosing environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ARDB—Antibiotic Resistance Genes Database

              The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database—the Antibiotic Resistance Genes Database (ARDB)—unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13 293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                16 February 2011
                : 6
                : 2
                : e17038
                Affiliations
                [1 ]Department of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
                [2 ]Department of Mathematical Statistics, Chalmers University of Technology, Göteborg, Sweden
                [3 ]Department of Chemistry, Umeå University, Umeå, Sweden
                Universidad Miguel Hernandez, Spain
                Author notes

                Conceived and designed the experiments: DGJL EK JF. Performed the experiments: EK DGJL F AJ CR RG BW HS. Analyzed the data: EK DGJL JF. Contributed reagents/materials/analysis tools: DGJL JF HS. Wrote the paper: EK DGJL.

                Article
                PONE-D-10-05158
                10.1371/journal.pone.0017038
                3040208
                21359229
                b0373782-459d-48e7-b2ad-d433c066e562
                Kristiansson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 November 2010
                : 11 January 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Genomics
                Metagenomics
                Microbiology
                Applied Microbiology
                Medical Microbiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article