19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities

      1 , 2 , 3
      Stroke
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maintaining blood-brain barrier (BBB) integrity is crucial for the homeostasis of the central nervous system. Structurally comprising the BBB, brain endothelial cells interact with pericytes, astrocytes, neurons, microglia, and perivascular macrophages in the neurovascular unit. Brain ischemia unleashes a profound neuroinflammatory response to remove the damaged tissue and prepare the brain for repair. However, the intense neuroinflammation occurring during the acute phase of stroke is associated with BBB breakdown, neuronal injury, and worse neurological outcomes. Here, we critically discuss the role of neuroinflammation in ischemic stroke pathology, focusing on the BBB and the interactions between central nervous system and peripheral immune responses. We highlight inflammation-driven injury mechanisms in stroke, including oxidative stress, increased MMP (matrix metalloproteinase) production, microglial activation, and infiltration of peripheral immune cells into the ischemic tissue. We provide an updated overview of imaging techniques for in vivo detection of BBB permeability, leukocyte infiltration, microglial activation, and upregulation of cell adhesion molecules following ischemic brain injury. We discuss the possibility of clinical implementation of imaging modalities to assess stroke-associated neuroinflammation with the potential to provide image-guided diagnosis and treatment. We summarize the results from several clinical studies evaluating the efficacy of anti-inflammatory interventions in stroke. Although convincing preclinical evidence suggests that neuroinflammation is a promising target for ischemic stroke, thus far, translating these results into the clinical setting has proved difficult. Due to the dual role of inflammation in the progression of ischemic damage, more research is needed to mechanistically understand when the neuroinflammatory response begins the transition from injury to repair. This could have important implications for ischemic stroke treatment by informing time- and context-specific therapeutic interventions.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease

          The concept of neurovascular unit (NVU), formalized at the 2001 Stroke Progress Review Group meeting of the National Institute of Neurological Disorders and Stroke, emphasizes the intimate relationship between the brain and its vessels. Since then, the NVU has attracted the interest of the neuroscience community resulting in considerable advances in the field. Here the current state-of-knowledge of the NVU will be assessed, focusing on one of its most vital roles: the coupling between neural activity and blood flow. The evidence supports a conceptual shift in the mechanisms of neurovascular coupling, from a unidimensional process involving neuronal-astrocytic signaling to local blood vessels, to a multidimensional one in which mediators released from multiple cells engage distinct signaling pathways and effector systems across the entire cerebrovascular network in a highly orchestrated manner. The recently appreciated NVU dysfunction in neurodegenerative diseases, although still poorly understood, supports emerging concepts that maintaining neurovascular health promotes brain health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

            The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal and spatial dynamics of cerebral immune cell accumulation in stroke.

              Ischemic stroke leads to significant morbidity and mortality in the Western world. Early reperfusion strategies remain the treatment of choice but can initiate and augment an inflammatory response causing secondary brain damage. The understanding of postischemic inflammation is very limited. The objectives of this study were to define the temporal and spatial infiltration of immune cell populations and their activation patterns in a murine cerebral ischemia-reperfusion injury model. Transient middle cerebral artery occlusion was induced for 1 hour followed by 12-hour to 7-day reperfusion in C57/BL6 mice. Immunohistochemistry and flow cytometry were used to quantify the infiltrating immune cell subsets. Accumulation of microglia and infiltration of the ischemic hemisphere by macrophages, lymphocytes, and dendritic cells (DCs) preceded the neutrophilic influx. DCs were found to increase 20-fold and constituted a substantial proportion of infiltrating cells. DCs exhibited a significant upregulation of major histocompatibility complex II and major histocompatibility complex II high-expressing DCs were found 100 times more abundant than in sham conditions. Upregulation of the costimulatory molecule CD80 was observed in DCs and microglial cells but did not further increase in major histocompatibility complex II high-expressing DCs. No lymphocyte activation was observed. Additionally, regulatory immune cells (natural killer T-cells, CD4(-)/CD8(-)T lymphocytes) cumulated in the ischemic hemisphere. This study provides a detailed analysis of the temporal dynamics of immune cell accumulation in a rodent stroke model. The peculiar activation pattern and massive increase of antigen-presenting cells in temporal conjunction with regulatory cells might provide additional insight into poststroke immune regulation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Stroke
                Stroke
                Ovid Technologies (Wolters Kluwer Health)
                0039-2499
                1524-4628
                May 2022
                May 2022
                : 53
                : 5
                : 1473-1486
                Affiliations
                [1 ]Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville (E.C-J).
                [2 ]Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, the Netherlands (R.M.D.).
                [3 ]Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (T.M.).
                Article
                10.1161/STROKEAHA.122.036946
                35387495
                b02773fb-0e34-4534-90a2-43082d2fbd65
                © 2022
                History

                Comments

                Comment on this article