19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results.

          Materials and Methods:

          A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal–Wallis test, followed by Mann–Whitney test at the 0.05 level of significance.

          Results:

          The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets.

          Conclusion:

          MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          An investigation into the effects of polishing on surface hardness and corrosion of orthodontic archwires.

          The purpose of this study was to investigate the effect of surface roughness on the relative corrosion rates of wires of four alloys-stainless steel, nickel titanium, cobalt chromium, and beta titanium. Batches of wire were divided into two groups. Wires in one group were industrially polished to provide a uniform surface finish; wires in the other group were left for comparison "as received." Wire diameter, hardness, and relative corrosion rates were compared within groups before and after polishing. Comparisons were also made across the four groups of alloys. The samples of as-received wires showed variations in surface finish, with beta titanium having the roughest appearance and cobalt chromium the smoothest. Nickel titanium and stainless steel surfaces were similar. Polishing provided a more uniform finish, but significantly reduced the diameter of the wires. Microhardness testing of wire surfaces of each alloy indicated that no significant work-hardening occurred as a result of polishing. The relative corrosion rates (expressed in terms of corrosion current density) in a 0.9% sodium chloride solution were estimated using the electrochemical technique of polarization resistance. Nickel titanium wires exhibited the greatest corrosion current density in the as-received state. Polishing significantly reduced the corrosion rate of nickel titanium, such that comparison between the four alloys in the polished state revealed no significant difference in their relative corrosion rate/corrosion current density.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elemental composition of brazing alloys in metallic orthodontic brackets.

            The aim of this study was to assess the elemental composition of the brazing alloy of representative orthodontic brackets. The brackets examined were Gemini (3M, Unitec, Monrovia, Calif), MicroLoc (GAC, Bohemia, NY), OptiMESHxrt (Ormco, Glendora, Calif), and Ultratrim (Dentarum, Ispringen, Germany). Four metallic brackets for each brand were embedded in epoxy resin and after metallographic grinding and polishing were cleaned in a water ultrasonic bath. Scanning electron microscopy and energy-dispersive x-ray microanalysis (EDS) were used to assess the quantitative composition of the brazing alloy. Four EDS spectra were collected for each brazing alloy, and the mean value and standard deviation for the concentration of each element were calculated. The elemental composition of the brazing alloys was determined as follows (percent weight): Gemini: Ni = 83.98 +/- 1.02, Si = 6.46 +/- 0.37, Fe = 5.90 +/- 0.93, Cr = 3.52 +/- 0.34; MicroLoc: Ag = 42.82 +/- 0.18, Au = 32.14 +/- 0.65, Cu = 24.53 +/- 0.26, Mg = 1.12 +/- 0.33; OptiMESHxrt: Au = 67.79 +/- 0.97, Fe = 15.69 +/- 0.29, Ni = 13.01 +/- 0.93, Cr = 4.01 +/- 0.35; Ultratrim: Ag = 87.97 +/- 0.33, Cu = 10.51 +/- 0.45, Mg = 1.29 +/- 0.63, Zn = 1.13 +/- 0.24. The findings of this study showed that different brazing materials were used for the different brands, and thus different performances are expected during intraoral exposure; potential effects on the biological properties also are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires.

              The purposes of this study were to obtain information about mechanical properties with the nanoindentation test for representative wire alloys and compare the results with conventional mechanical tests.
                Bookmark

                Author and article information

                Journal
                Dent Res J (Isfahan)
                Dent Res J (Isfahan)
                DRJ
                Dental Research Journal
                Medknow Publications & Media Pvt Ltd (India )
                1735-3327
                2008-0255
                Jul-Aug 2017
                : 14
                : 4
                : 282-287
                Affiliations
                [1]Dental Materials Research Center and Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
                Author notes
                Address for correspondence: Dr. Marzie Kachuie, Isfahan University of Medical Science Hezar Jarib Street, Isfahan, Iran. E-mail: mkachuie86@ 123456yahoo.com
                Article
                DRJ-14-282
                5553257
                b019d7b2-6490-4a6b-949e-e501fcbee300
                Copyright: © 2017 Dental Research Journal

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : January 2017
                : May 2017
                Categories
                Original Article

                Dentistry
                casting technique,dental,hardness,metals,orthodontic brackets,orthodontic wires
                Dentistry
                casting technique, dental, hardness, metals, orthodontic brackets, orthodontic wires

                Comments

                Comment on this article