72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue engineering: A new vista in periodontal regeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue engineering is a highly promising field of reconstructive biology that draws on recent advances in medicine, surgery, molecular and cellular biology, polymer chemistry, and physiology. The objective of using tissue engineering as therapeutic application has been to harness its ability to exploit selected and primed cells together with an appropriate mix of regulatory factors, to allow growth and specialization of cells and matrix. The authors reviewed controlled clinical trials which also included histological studies that evaluated the potential of tissue engineering as a clinical tool in regeneration. PubMed/MEDLINE databases were searched for studies up to and including June 2010 to identify appropriate articles. A comprehensive search was designed, and the articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal regeneration were included. Studies demonstrated that the periodontal regeneration with the use of combination of tissue engineered products with an osteoconductive matrix improve the beneficial effect of these materials by accelerating cellular in growth and revascularization of the wound site. Studies have suggested the use of rh Platelet-derived growth factor + beta tricalcium phosphate for regeneration of the periodontal attachment apparatus in combination with collagen membranes as an acceptable alternative to connective tissue graft for covering gingival recession defects. The studies concluded that growth factors promote true regeneration of the periodontal attachment apparatus and the use of combination protein therapeutics which is commercially available can provide more predictable, faster, less invasive, less traumatic, and efficient outcome for the patient.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication of novel biomaterials through molecular self-assembly.

          Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue engineering.

            The loss or failure of an organ or tissue is one of the most frequent, devastating, and costly problems in human health care. A new field, tissue engineering, applies the principles of biology and engineering to the development of functional substitutes for damaged tissue. This article discusses the foundations and challenges of this interdisciplinary field and its attempts to provide solutions to tissue creation and repair.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Platelet-rich plasma (PRP): what is PRP and what is not PRP?

              R Marx (2001)
                Bookmark

                Author and article information

                Journal
                J Indian Soc Periodontol
                JISP
                Journal of Indian Society of Periodontology
                Medknow Publications & Media Pvt Ltd (India )
                0972-124X
                0975-1580
                Oct-Dec 2011
                : 15
                : 4
                : 328-337
                Affiliations
                [1] Department of Periodontics and Oral Implantology, D.A.V (C) Dental College and Hospital, Yamuna Nagar, Haryana, India
                Author notes
                Address for correspondence: Dr. Deepa Philips, Department of Periodontics and Oral Implantology, D.A.V (C) Dental College and Hospital, Yamuna Nagar - 135 001, Haryana, India. E-mail: deepaphilips24@ 123456gmail.com
                Article
                JISP-15-328
                10.4103/0972-124X.92564
                3283928
                22368355
                afe8e069-a62b-4bc5-aa18-6a894157e262
                Copyright: © Journal of Indian Society of Periodontology

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 January 2011
                : 28 November 2011
                Categories
                Review Article

                Dentistry
                recombinant therapeutics,cell,periodontal regeneration
                Dentistry
                recombinant therapeutics, cell, periodontal regeneration

                Comments

                Comment on this article