46
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of heterologous and homologous covid-19 vaccine regimens: living systematic review with network meta-analysis

      research-article
      1 , 2 , 1 , 2 ,
      The BMJ
      BMJ Publishing Group Ltd.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To evaluate the effectiveness of heterologous and homologous covid-19 vaccine regimens with and without boosting in preventing covid-19 related infection, hospital admission, and death.

          Design

          Living systematic review and network meta-analysis.

          Data sources

          World Health Organization covid-19 databases, including 38 sources of published studies and preprints.

          Study selection

          Randomised controlled trials, cohort studies, and case-control studies.

          Methods

          38 WHO covid-19 databases were searched on a weekly basis from 8 March 2022 to 31 July 2022. Studies that assessed the effectiveness of heterologous and homologous covid-19 vaccine regimens with or without a booster were identified. Studies were eligible when they reported the number of documented, symptomatic, severe covid-19 infections, covid-19 related hospital admissions, or covid-19 related deaths among populations that were vaccinated and unvaccinated. The primary measure was vaccine effectiveness calculated as 1−odds ratio. Secondary measures were surface under the cumulative ranking curve (SUCRA) scores and the relative effects for pairwise comparisons. The risk of bias was evaluated by using the risk of bias in non-randomised studies of interventions (ROBINS-I) tool for all cohort and case-control studies. The Cochrane risk of bias tool (version 2; ROB-2) was used to assess randomised controlled trials.

          Results

          The second iteration of the analysis comprised 63 studies. 25 combinations of covid-19 vaccine regimens were identified, of which three doses of mRNA vaccine were found to be 93% (95% credible interval 70% to 98%) effective against asymptomatic or symptomatic covid-19 infections for non-delta or non-omicron related infections. Heterologous boosting using two dose adenovirus vector vaccines with one dose mRNA vaccine showed a vaccine effectiveness of 94% (72% to 99%) against non-delta or non-omicron related asymptomatic or symptomatic infections. Three doses of mRNA vaccine were found to be the most effective in reducing non-delta or non-omicron related hospital admission (96%, 82% to 99%). The vaccine effectiveness against death in people who received three doses of mRNA vaccine remains uncertain owing to confounders. The estimate for a four dose mRNA vaccine regimen was of low certainty, as only one study on the effectiveness of four doses could be included in this update. More evidence on four dose regimens will be needed to accurately assess the effectiveness of a fourth vaccine dose. For people with delta or omicron related infection, a two dose regimen of an adenovirus vector vaccine with one dose of mRNA booster was 77% (42% to 91%) effective against asymptomatic or symptomatic covid-19 infections, and a three dose regimen of a mRNA vaccine was 93% (76% to 98%) effective against covid-19 related hospital admission.

          Conclusion

          An mRNA booster is recommended to supplement any primary vaccine course. Heterologous and homologous three dose regimens work comparably well in preventing covid-19 infections, even against different variants. The effectiveness of three dose vaccine regimens against covid-19 related death remains uncertain.

          Systematic review registration

          This review was not registered. The protocol is included in the supplementary document.

          Readers’ note

          This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 1 of the original article published on 31 May 2022 ( BMJ 2022;377:e069989), and previous versions can be found as data supplements ( https://www.bmj.com/content/377/bmj-2022-069989/related). When citing this paper please consider adding the version number and date of access for clarity.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            RoB 2: a revised tool for assessing risk of bias in randomised trials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

              Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
                Bookmark

                Author and article information

                Contributors
                Role: masters student
                Role: assistant professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2022
                31 May 2022
                31 May 2022
                : 377
                : e069989
                Affiliations
                [1 ]Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
                [2 ]Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
                Author notes
                Correspondence to: P P-H Cheung ppcheung@ 123456cuhk.edu.hk
                Author information
                https://orcid.org/0000-0001-8474-2906
                Article
                bmj-2022-069989.R2 auwi069989_1
                10.1136/bmj-2022-069989
                9724446
                35640925
                afddd6a1-8799-4b85-b285-c5328c445a44
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 27 April 2022
                : 15 November 2022
                Categories
                Research
                2474

                Medicine
                Medicine

                Comments

                Comment on this article

                scite_

                Similar content161

                Cited by56

                Most referenced authors5,517