Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neuroendocrine correlates of sex-role reversal in barred buttonquails

      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2048048e160">Sex differences in brain structure and behaviour are well documented among vertebrates. An excellent model exploring the neural mechanisms of sex differences in behaviour is represented by sex-role-reversed species. In the majority of bird species, males compete over access to mates and resources more strongly than do females. It is thought that the responsible brain regions are therefore more developed in males than in females. Because these behaviours and brain regions are activated by androgens, males usually have increased testosterone levels during breeding. Therefore, in species with sex-role reversal, certain areas of the female brain should be more developed or steroid hormone profiles should be sexually reversed. Here, I studied circulating hormone levels and gene expression of steroid hormone receptors and aromatase in a captive population of barred buttonquails ( <i>Turnix suscitator</i>). While females performed courtship and agonistic behaviours, there was no evidence for sexually reversed hormone profiles. However, I found female-biased sex differences in gene expression of androgen receptors in several hypothalamic and limbic brain regions that were already in place at hatching. Such sex differences are not known from non-sex-role-reversed species. These data suggest that increased neural sensitivity to androgens could be involved in the mechanisms mediating sex-role-reversed behaviours. </p>

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Reframing sexual differentiation of the brain.

          In the twentieth century, the dominant model of sexual differentiation stated that genetic sex (XX versus XY) causes differentiation of the gonads, which then secrete gonadal hormones that act directly on tissues to induce sex differences in function. This serial model of sexual differentiation was simple, unifying and seductive. Recent evidence, however, indicates that the linear model is incorrect and that sex differences arise in response to diverse sex-specific signals originating from inherent differences in the genome and involve cellular mechanisms that are specific to individual tissues or brain regions. Moreover, sex-specific effects of the environment reciprocally affect biology, sometimes profoundly, and must therefore be integrated into a realistic model of sexual differentiation. A more appropriate model is a parallel-interactive model that encompasses the roles of multiple molecular signals and pathways that differentiate males and females, including synergistic and compensatory interactions among pathways and an important role for the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The determination of five steroids in avian plasma by radioimmunoassay and competitive protein-binding.

            A method has been developed for the simultaneous determination of testosterone, 5alpha-dihydrotestosterone and corticosterone, or of estrone, estradiol-17beta and corticosterone, after separation on a Celite:propylene glycol:ethylene glycol column (6:1.5:1.5 w/v/v). The lower quarter of the column was packed with a Celite: water mixture (3:1 w/v) as a stationary phase (glycol) 'trap'. This effectively prevented leaching of the glycols into the eluate as the concentration of ethyl acetate in the mobile phase was increased to elute the more polar steroids. In addition, a second system utilizing a Celite: ethylene glycol column (2:1 w/v) for the separation of estrone and estradiol-17beta is described. Testosterone, 5alpha-dihydrotestosterone, estrone and estradiol-17beta were measured by radioimmunoassay and corticosterone by a competitive protein-binding technique. Reliability criteria are presented showing that the assay systems used are accurate and reproducible. Plasma-steroid levels of eight avian species are also presented and compared with those found by other investigators.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gonadal steroid induction of structural sex differences in the central nervous system.

                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                November 23 2016
                November 23 2016
                : 283
                : 1843
                : 20161969
                Article
                10.1098/rspb.2016.1969
                5136596
                27881754
                af7d340f-b308-4074-becb-cd2be340ce15
                © 2016
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,537

                Cited by4

                Most referenced authors324