3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic Antibiofilm Effects of Pseudolaric Acid A Combined with Fluconazole against Candida albicans via Inhibition of Adhesion and Yeast-To-Hypha Transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Candida albicans biofilms are resistant to several clinical antifungal agents. Thus, it is necessary to develop new antibiofilm intervention measures. Pseudolaric acid A (PAA), a diterpenoid mainly derived from the pine bark of Pseudolarix kaempferi, has been reported to have an inhibitory effect on C. albicans. The primary aim of the current study was to investigate the antibiofilm effect of PAA when combined with fluconazole (FLC) and explore the underlying mechanisms. Biofilm activity was assessed by tetrazolium {XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt]} reduction assays. PAA (4 μg/mL) combined with FLC (0.5 μg/mL) significantly inhibited early, developmental, and mature biofilm formation compared with the effect of PAA or FLC alone ( P < 0.05). Furthermore, PAA (4 μg/mL) combined with FLC (0.5 μg/mL) produced a 56% reduction in C. albicans biofilm adhesion. The combination of PAA (4 μg/mL) and FLC (0.5 μg/mL) also performed well in inhibiting yeast-to-hypha transition. Transcriptome analysis using RNA sequencing and quantitative reverse transcription PCR indicated that the PAA-FLC combination treatment produced a strong synergistic inhibitory effect on the expression of genes involved in adhesion ( ALS1, ALS4, and ALS2) and yeast-to-hypha transition ( ECE1, PRA1, and TEC1). Notably, PAA, rather than FLC, may have a primary role in suppressing the expression of ALS1. In conclusion, these findings demonstrate, for the first time, that the combination of PAA and FLC has an improved antibiofilm effect against the formation of C. albicans biofilms by inhibiting adhesion and yeast-to-hypha transition; this may provide a novel therapeutic strategy for treating C. albicans biofilm-associated infection.

          IMPORTANCE Biofilms are the primary cause of antibiotic-resistant candida infections associated with medical implants and devices worldwide. Treating biofilm-associated infections is a challenge for clinicians because these infections are intractable and persistent. Candida albicans readily forms extensive biofilms on the surface of medical implants and mucosa. In this study, we demonstrated, for the first time, an inhibitory effect of pseudolaric acid A alone and in combination with fluconazole on C. albicans biofilms. Moreover, pseudolaric acid A in combination with fluconazole exerted an antibiofilm effect through multiple pathways, including inhibition of yeast-to-hypha transition and adhesion. This research not only provides new insights into the synergistic mechanisms of antifungal drug combinations but also brings new possibilities for addressing C. albicans drug resistance.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019

          This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hidden killers: human fungal infections.

            Although fungal infections contribute substantially to human morbidity and mortality, the impact of these diseases on human health is not widely appreciated. Moreover, despite the urgent need for efficient diagnostic tests and safe and effective new drugs and vaccines, research into the pathophysiology of human fungal infections lags behind that of diseases caused by other pathogens. In this Review, we highlight the importance of fungi as human pathogens and discuss the challenges we face in combating the devastating invasive infections caused by these microorganisms, in particular in immunocompromised individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasive candidiasis

              Invasive candidiasis is an important health-care-associated fungal infection that can be caused by several Candida spp.; the most common species is Candida albicans, but the prevalence of these organisms varies considerably depending on geographical location. The spectrum of disease of invasive candidiasis ranges from minimally symptomatic candidaemia to fulminant sepsis with an associated mortality exceeding 70%. Candida spp. are common commensal organisms in the skin and gut microbiota, and disruptions in the cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation) promote invasive disease. A deeper understanding of specific Candida spp. virulence factors, host immune response and host susceptibility at the genetic level has led to key insights into the development of early intervention strategies and vaccine candidates. The early diagnosis of invasive candidiasis is challenging but key to the effective management, and the development of rapid molecular diagnostics could improve the ability to intervene rapidly and potentially reduce mortality. First-line drugs, including echinocandins and azoles, are effective, but the emergence of antifungal resistance, especially among Candida glabrata, is a matter of concern and underscores the need to administer antifungal medications in a judicious manner, avoiding overuse when possible. A newly described pathogen, Candida auris, is an emerging multidrug-resistant organism that poses a global threat.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Microbiol Spectr
                Microbiol Spectr
                spectrum
                Microbiology Spectrum
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2165-0497
                17 March 2022
                Mar-Apr 2022
                17 March 2022
                : 10
                : 2
                : e01478-21
                Affiliations
                [a ] Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
                Mycology Laboratory, Wadsworth Center
                Author notes

                Bin Zhu and Zhen Li contributed equally to this article. Author order was determined by alphabetical order.

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0000-0001-5467-9512
                Article
                01478-21 spectrum.01478-21
                10.1128/spectrum.01478-21
                9045105
                35297651
                af365bd9-23a4-4abb-abb0-113f365faecd
                Copyright © 2022 Zhu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 8 September 2021
                : 18 February 2022
                Page count
                supplementary-material: 1, Figures: 7, Tables: 2, Equations: 0, References: 45, Pages: 15, Words: 7877
                Funding
                Funded by: National Natural Science Foundation of China (NSFC), FundRef https://doi.org/10.13039/501100001809;
                Award ID: 82003817
                Award Recipient :
                Funded by: Longhua Hospital Shanghai University of TCM | Science and Technology Innovation Project of Longhua Hospital, FundRef https://doi.org/10.13039/501100013090;
                Award ID: CX202058
                Award Recipient :
                Funded by: Shanghai Rising-Star Program, FundRef https://doi.org/10.13039/501100013105;
                Award ID: SHWRS (2018)-02
                Award Recipient :
                Categories
                Research Article
                antimicrobial-chemotherapy, Antimicrobial Chemotherapy
                Custom metadata
                March/April 2022

                candida albicans,antibiofilm,fluconazole,pseudolaric acid a,resistance,synergism

                Comments

                Comment on this article