1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Total Synthesis of (−)-Pseudolaric Acid B

      , ,
      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a full account of our work toward the total synthesis of pseudolaric acid B (1a), a diterpene acid isolated from the bark of Pseudolarix kaempferi Gordon (pinaceae). Compound 1a is an antifungal and antifertility agent. Furthermore, its capacity for inhibiting tubulin polymerization makes it a potential lead for cancer therapy. Herein, we describe the use of a Ru- or Rh-catalyzed [5 + 2] intramolecular cycloaddition reaction of an alkyne and a vinylcyclopropane for the construction of the polyhydroazulene core of the molecule. Our first unsuccessful strategy for the introduction of the quaternary center based on an epoxide opening with cyanide led to the discovery of a new TBAF-mediated isomerization of a 1,4-diene to a 1,3-diene and a vinylogous eliminative opening of an epoxide to form a dienol. Our second strategy, based on the cyclization of an alkoxycarbonyl radical upon a diene system, succeeded in forming the quaternary center. Detailed studies showed the dependence of this underutilized approach for the synthesis of lactones on substrate structure and reaction conditions. In the late stage of the synthesis, the unique capacity of cerium organometallic reagents to add to a sensitive, sterically hindered ketone was demonstrated. The easy formation of an oxo-bridged derivative was the major hurdle to the completion of the synthesis and showcased the intriguing reactivity of the complex core of the pseudolaric acids.

          Related collections

          Author and article information

          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          December 03 2008
          December 03 2008
          : 130
          : 48
          : 16424-16434
          Article
          10.1021/ja806724x
          2698933
          18998641
          cdd95a0e-ee39-4310-9cb3-c65b234c181c
          © 2008
          History

          Comments

          Comment on this article