17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lung cancer risk and exposure to air pollution: a multicenter North China case–control study involving 14604 subjects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          For North Chinese lung cancer patients, there is limited study on the distribution of air pollution and smoking related features based on analyses of large-scale, high-quality population datasets. The aim of the study was to fully analyze risk factors for 14604 Subjects.

          Methods

          Participants and controls were recruited in 11 cities of North China. Participants’ basic information (sex, age, marital status, occupation, height, and weight), blood type, smoking history, alcohol consumption, history of lung-related diseases and family history of cancer were collected. PM2.5 concentration data for each year in each city of the study area from 2005 to 2018 were extracted based on geocoding of each person's residential address at the time of diagnosis. Demographic variables and risk factors were compared between cases and matched controls using a univariate conditional logistic regression model. Multivariate conditional logistic regression models were applied to estimate the odds ratio (OR) and 95% confidence interval (CI) for risk factors in univariate analysis. The nomogram model and the calibration curve were developed to predict lung cancer probability for the probability of lung cancer.

          Results

          There was a total of 14604 subjects, comprising 7124 lung cancer cases and 7480 healthy controls included in the study. Marital status of unmarried persons, people with a history of lung-related disease, corporate personnel and production /service personnel were protective factors for lung cancer. People younger than 50 years old, people who were smoking and quit smoking, people who had been drinking consistently, people with family history of cancer and PM2.5 exposure were proven to be a risk factor for lung cancer. The risk of lung cancer varied with sex, smoking status and air pollution. Consistent alcohol consumption, persistent smoking and smoking quit were risk factors for lung cancer in men. By smoking status, male was risk factor for lung cancer in never smokers. Consistent alcohol consumption added risk for lung cancer in never smokers. The combined effects of PM2.5 pollution exposure and ever smoking aggravated the incidence of lung cancer. According to air pollution, lung cancer risk factors are completely different in lightly and heavily polluted areas. In lightly polluted areas, a history of lung-related disease was a risk factor for lung cancer. In heavily polluted areas, male, consistent alcohol consumption, a family history of cancer, ever smokers and smoking quit were all risk factors for lung cancer. A nomogram was plotted and the results showed that PM2.5 was the main factor affecting the occurrence of lung cancer.

          Conclusions

          The large-scale accurate analysis of multiple risk factors in different air quality environments and various populations, provide clear directions and guidance for lung cancer prevention and precise treatment.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics in China, 2015.

            With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE).

              Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses. The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m(3)). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m(3). The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m(3)) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day). Particulate matter air pollution contributes to lung cancer incidence in Europe. European Community's Seventh Framework Programme. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                heyutong@hebmu.edu.cn
                Journal
                BMC Pulm Med
                BMC Pulm Med
                BMC Pulmonary Medicine
                BioMed Central (London )
                1471-2466
                24 May 2023
                24 May 2023
                2023
                : 23
                : 182
                Affiliations
                GRID grid.452582.c, Cancer Institute, the Fourth Hospital of Hebei Medical University, ; No.12 Jiankang Road, Changan district, Shijiazhuang, 050011 Hebei Province China
                Article
                2480
                10.1186/s12890-023-02480-x
                10210434
                37226220
                aed332cf-14cb-4d39-a8ab-3ee33a1e9fb7
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 5 January 2023
                : 16 May 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Respiratory medicine
                lung cancer,case–control,air pollution,never-smokers,nomogram model
                Respiratory medicine
                lung cancer, case–control, air pollution, never-smokers, nomogram model

                Comments

                Comment on this article