Neurohumoral responses have been implicated in the pathogenesis of ischemia-evoked cerebral edema. In a well-characterized animal model of ischemic stroke, the present study was undertaken to 1) study the profile of plasma arginine-vasopressin (AVP), and 2) determine whether osmotherapy with mannitol and various concentrations of hypertonic saline (HS) solutions influence plasma AVP levels. Halothane-anesthetized adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion with the intraluminal filament technique. Plasma AVP levels (means +/- SD) were significantly elevated at 24 h (42 +/- 21 pg/ml), 48 h (50 +/- 28 pg/ml), and 72 h (110 +/- 47 pg/ml), and returned to baseline at 96 h (22 +/- 15 pg/ml) following middle cerebral artery occlusion compared with sham-operated controls (14 +/- 7 pg/ml). Plasma AVP levels at 72 h were significantly attenuated with 7.5% HS (37 +/- 8 pg/ml; 360 +/- 11 osmol/l) compared with 0.9% saline (73 +/- 6; 292 +/- 6 osmol/l), 3% HS (66 +/- 8 pg/ml; 303 +/- 12 osmol/l), or mannitol (74 +/- 9 pg/ml; 313 +/- 14 osmol/l) treatment. HS (7.5%) significantly attenuated water content in the ipsilateral and contralateral hemispheres compared with surgical shams, 0.9% saline, 3% HS, and mannitol treatments. Peak plasma AVP levels were not associated with direct histopathological injury to the anterior hypothalamus. Attenuation of brain water content with 7.5% HS treatment coincides with attenuated serum AVP levels, and we speculate that this may represent one additional mechanism by which osmotherapy attenuates edema associated with ischemic stroke.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.