1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AI-based spectroscopic monitoring of real-time interactions between SARS-CoV-2 and human ACE2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          The COVID-19 caused by SARS-CoV-2 virus has posed a tremendous threat to human health. The interactions between human angiotensin-converting enzyme 2 and the spike glycoprotein of SARS-CoV-2 hold the key to understanding the molecular mechanism to develop treatment and vaccines. However, the simulation of these interactions in fluctuating surroundings is challenging because it requires many electronic structure calculations at the quantum mechanics level for a large number of representative configurations. We report a machine learning protocol that can efficiently predict the IR spectra of SARS-CoV-2 with high efficiency and characterize fine changes in IR spectra associated with variations of protein secondary structures. Machine learning provides a cost-effective tool for monitoring of real-time interactions between the SARS-CoV-2 and human ACE2.

          Abstract

          The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades a human cell via human angiotensin-converting enzyme 2 (hACE2) as the entry, causing the severe coronavirus disease (COVID-19). The interactions between hACE2 and the spike glycoprotein (S protein) of SARS-CoV-2 hold the key to understanding the molecular mechanism to develop treatment and vaccines, yet the dynamic nature of these interactions in fluctuating surroundings is very challenging to probe by those structure determination techniques requiring the structures of samples to be fixed. Here we demonstrate, by a proof-of-concept simulation of infrared (IR) spectra of S protein and hACE2, that time-resolved spectroscopy may monitor the real-time structural information of the protein−protein complexes of interest, with the help of machine learning. Our machine learning protocol is able to identify fine changes in IR spectra associated with variation of the secondary structures of S protein of the coronavirus. Further, it is three to four orders of magnitude faster than conventional quantum chemistry calculations. We expect our machine learning protocol would accelerate the development of real-time spectroscopy study of protein dynamics.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

              Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc Natl Acad Sci U S A
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                29 June 2021
                14 June 2021
                14 June 2021
                : 118
                : 26
                : e2025879118
                Affiliations
                [1] aSchool of Artificial Intelligence, Anhui University , Hefei, Anhui 230601, People’s Republic of China;
                [2] bGusu Laboratory of Materials , Suzhou, Jiangsu 215123, People’s Republic of China;
                [3] cHefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People’s Republic of China
                Author notes
                2To whom correspondence may be addressed. Email: jiangj1@ 123456ustc.edu.cn .

                Edited by Shaul Mukamel, University of California, Irvine, CA, and approved May 14, 2021 (received for review December 16, 2020)

                Author contributions: J.J. designed research; S.Y. performed research; S.Y. and G.Z. analyzed data; and S.Y. and G.Z. wrote the paper.

                1S.Y. and G.Z. contributed equally to this work.

                Author information
                https://orcid.org/0000-0003-0125-9666
                https://orcid.org/0000-0002-6116-5605
                Article
                202025879
                10.1073/pnas.2025879118
                8256048
                34185681
                ad637c73-7edf-4ae5-a9cd-442a7a0f4581
                Copyright © 2021 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

                History
                Page count
                Pages: 5
                Funding
                Funded by: Ministry of Science and Technology of the People's Republic of China (MOST) 501100002855
                Award ID: 2018YFA0208603
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Funded by: Ministry of Science and Technology of the People's Republic of China (MOST) 501100002855
                Award ID: 2017YFA0303500
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Funded by: Ministry of Science and Technology of the People's Republic of China (MOST) 501100002855
                Award ID: 2016YFA0400904
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Funded by: National Natural Science Foundation of China (NSFC) 501100001809
                Award ID: 22033007
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Funded by: National Natural Science Foundation of China (NSFC) 501100001809
                Award ID: 21633007
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Funded by: National Natural Science Foundation of China (NSFC) 501100001809
                Award ID: 21790350
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Funded by: National Natural Science Foundation of China (NSFC) 501100001809
                Award ID: 21703221
                Award Recipient : Guozhen Zhang Award Recipient : Jun Jiang
                Categories
                530
                410
                Physical Sciences
                Chemistry
                Custom metadata
                free

                sars-cov-2,ir spectroscopy,neural networks,protein dynamics

                Comments

                Comment on this article