13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of a palindromic sequence that is responsible for the up-regulation of NAPDH-ferredoxin reductase in a ferredoxin I deletion strain of Azotobacter vinelandii.

      1 ,
      The Journal of biological chemistry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Azotobacter vinelandii ferredoxin I (AvFdI) is one member of a class of 7Fe ferredoxins found in a variety of organisms that are all capable of aerobic growth. Disruption of the fdxA gene, which encodes AvFdI, leads to overexpression of its redox partner, NADPH-ferredoxin reductase (FPR). In this study the mechanism of FdI-mediated regulation of FPR was investigated. Northern analysis has shown that regulation is at the level of fpr transcription, the start site for transcription has been identified, and it is preceded by a canonical sigma 70-type bacterial promoter. Gel mobility shift assays show that there is a putative regulatory protein in A. vinelandii that binds specifically upstream of the -35 region. That protein is not AvFdI. A palindromic sequence was identified as a putative binding site, and randomization of that sequence completely eliminates binding of the putative regulatory protein. A luciferase reporter gene was placed under control of the A. vinelandii fpr promoter and introduced into wild type and FdI- strains of A. vinelandii. Luciferase activity was enhanced 7-fold in the FdI- mutant relative to the wild type. Alteration of the palindromic sequence reduced the luciferase levels in the FdI- strain to those of the wild type, demonstrating that FdI regulates FPR through the palindrome and that the reaction is an activation rather than a repression. The identified palindrome is approximately 50% identical to the SoxS binding site upstream of Escherichia coli fpr, suggesting that A. vinelandii may have a SoxS-like regulatory system and that the function of FdI might be to specifically inactivate that system.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          0021-9258
          0021-9258
          May 30 1997
          : 272
          : 22
          Affiliations
          [1 ] Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.
          Article
          9162086
          ad5d0e0a-3ea4-410d-b69d-c1f6d6ded79b
          History

          Comments

          Comment on this article