2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Isolation and properties of a glycohydrolase specific for nicotinamide mononucleotide from Azotobacter vinelandii.

      Journal of biochemistry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A glycohydrolase that catalyzes the irreversible conversion of NMN to nicotinamide and ribose 5-phosphate has been partially purified from a sonic extract of Azotobacter vinelandii. The enzyme is highly specific for NMN. NAD, NADP, nicotinic acid-adenine dinucleotide, nicotinamide riboside and alpha-NMN are not significantly hydrolyzed by this enzyme, nor do they compete with NMN. The enzyme also exhibits an absolute dependence on guanylic acid derivatives with following order of relative effectiveness: GTP, guanosine 5'-tetraphosphate greater than dGTP, GDP, 2'-GMP, 3'-GMP greater than GMP, dGMP. A heat-resistant, nondialyzable factor which could replace the GTP requirement was found in the sonic extract. The Ka for GTP and the Km for NMN in the presence of GTP at 1mm were calculated to be 0.025 mM and 4.5 mM respectively. GMP, dGMP, and dCMP were found to be effective inhibitors of the enzyme when 1 mM GTP was also present. The kinetic data suggest that the binding site for these mononucleotides is distinct from the active site or the GTP binding site. The ability of this enzyme to cleave NMN is suggestive of a metabolic role of the enzyme in selective conversion of NMN to nicotinamide, which, in turn, would be re-utilized by the cell as a precursor of NAD via nicotinic acid.

          Related collections

          Author and article information

          Journal
          J. Biochem.
          Journal of biochemistry
          0021-924X
          0021-924X
          Apr 1979
          : 85
          : 4
          Article
          457634
          8c9d5795-cadc-4455-9008-31c6a545e500
          History

          Comments

          Comment on this article