1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater

      , , , ,
      Journal of Environmental Management

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Engineering. Sewage treatment with anammox.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metabolic network analysis reveals microbial community interactions in anammox granules

            Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomics to examine the gene expression of anammox and heterotrophic bacteria and to identify their potential interactions. We find that Chlorobi-affiliated bacteria may be highly active protein degraders, catabolizing extracellular peptides while recycling nitrate to nitrite. Other heterotrophs may also contribute to scavenging of detritus and peptides produced by anammox bacteria, and potentially use alternative electron donors, such as H2, acetate and formate. Our findings improve the understanding of metabolic activities and interactions between anammox and heterotrophic bacteria and offer the first transcriptional insights on ecosystem function in anammox granules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater.

              Municipal wastewater collected in areas with moderate climate is subjected to a gradual temperature decrease from around 20 °C in summer to about 10 °C in winter. A lab-scale moving bed biofilm reactor (MBBR) with carrier material (K3 from AnoxKaldnes) was used to test the tolerance of the overall partial nitritation/anammox process to this temperature gradient. A synthetic influent, containing only ammonium and no organic carbon was used to minimize denitrification effects. After stable reactor operation at 20 °C, the temperature was slowly reduced by 2 °C per month and afterward held constant at 10 °C. Along the temperature decrease, the ammonium conversion dropped from an average of 40 gN m(-3) d(-1) (0.2 gN kgTSS h(-1)) at 20 °C to about 15 gN m(-3) d(-1) (0.07 gN kg TSS h(-1)) at 10 °C, while the effluent concentration was kept <8 mg NH4-N l(-1) during the whole operation. This also resulted in doubling of the hydraulic retention time over the temperature ramp. The MBBR with its biofilm on 10 mm thick carriers proved to sufficiently sustain enough biomass to allow anammox activity even at 10 °C. Even though there was a minor nitrite-build up when the temperature dropped below 12.5 °C, reactor performance recovered as the temperature decrease continued. Microbial community analysis by 16S rRNA amplicon analysis revealed a relatively stable community composition over the entire experimental period.
                Bookmark

                Author and article information

                Journal
                Journal of Environmental Management
                Journal of Environmental Management
                03014797
                April 2023
                April 2023
                : 331
                : 117298
                Article
                10.1016/j.jenvman.2023.117298
                ad36a566-c1bf-4030-898b-a7bcf515f75c
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article