0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tissue mosaicism following stem cell aging: blood as an exemplar

      ,
      Nature Aging
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Age-related clonal hematopoiesis associated with adverse outcomes.

          The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation-based biomarkers and the epigenetic clock theory of ageing

            Identifying and validating molecular targets of interventions that extend the human health span and lifespan has been difficult, as most clinical biomarkers are not sufficiently representative of the fundamental mechanisms of ageing to serve as their indicators. In a recent breakthrough, biomarkers of ageing based on DNA methylation data have enabled accurate age estimates for any tissue across the entire life course. These 'epigenetic clocks' link developmental and maintenance processes to biological ageing, giving rise to a unified theory of life course. Epigenetic biomarkers may help to address long-standing questions in many fields, including the central question: why do we age?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.

              Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow-biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Aging
                Nat Aging
                Springer Science and Business Media LLC
                2662-8465
                March 2024
                March 04 2024
                : 4
                : 3
                : 295-308
                Article
                10.1038/s43587-024-00589-0
                abaa5a79-c7a3-4fa2-b3f6-287ed39296b4
                © 2024

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article