4
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Unconventional CD147‐dependent platelet activation elicited by SARS‐CoV‐2 in COVID‐19

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Platelet activation and thrombotic events characterizes COVID‐19.

          Objectives

          To characterize platelet activation and determine if SARS‐CoV‐2 induces platelet activation.

          Patients/Methods

          We investigated platelet activation in 119 COVID‐19 patients at admission in a university hospital in Milan, Italy, between March 18 and May 5, 2020. Sixty‐nine subjects (36 healthy donors, 26 patients with coronary artery disease, coronary artery disease, and seven patients with sepsis) served as controls.

          Results

          COVID‐19 patients had activated platelets, as assessed by the expression and distribution of HMGB1 and von Willebrand factor, and by the accumulation of platelet‐derived (plt) extracellular vesicles (EVs) and HMGB1 + plt‐EVs in the plasma. P‐selectin upregulation was not detectable on the platelet surface in a fraction of patients (55%) and the concentration of soluble P‐selectin in the plasma was conversely increased. The plasma concentration of HMGB1 + plt‐EVs of patients at hospital admission remained in a multivariate analysis an independent predictor of the clinical outcome, as assessed using a 6‐point ordinal scale (from 1 = discharged to 6 = death). Platelets interacting in vitro with SARS‐CoV‐2 underwent activation, which was replicated using SARS‐CoV‐2 pseudo‐viral particles and purified recombinant SARS‐CoV‐2 spike protein S1 subunits. Human platelets express CD147, a putative coreceptor for SARS‐CoV‐2, and Spike‐dependent platelet activation, aggregation and granule release, release of soluble P‐selectin and HMGB1 + plt‐EVs abated in the presence of anti‐CD147 antibodies.

          Conclusions

          Hence, an early and intense platelet activation, which is reproduced by stimulating platelets in vitro with SARS‐CoV‐2, characterizes COVID‐19 and could contribute to the inflammatory and hemostatic manifestations of the disease.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Virological assessment of hospitalized patients with COVID-2019

          Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute respiratory distress syndrome: the Berlin Definition.

            The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial

              Summary Background No specific antiviral drug has been proven effective for treatment of patients with severe coronavirus disease 2019 (COVID-19). Remdesivir (GS-5734), a nucleoside analogue prodrug, has inhibitory effects on pathogenic animal and human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro, and inhibits Middle East respiratory syndrome coronavirus, SARS-CoV-1, and SARS-CoV-2 replication in animal models. Methods We did a randomised, double-blind, placebo-controlled, multicentre trial at ten hospitals in Hubei, China. Eligible patients were adults (aged ≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, with an interval from symptom onset to enrolment of 12 days or less, oxygen saturation of 94% or less on room air or a ratio of arterial oxygen partial pressure to fractional inspired oxygen of 300 mm Hg or less, and radiologically confirmed pneumonia. Patients were randomly assigned in a 2:1 ratio to intravenous remdesivir (200 mg on day 1 followed by 100 mg on days 2–10 in single daily infusions) or the same volume of placebo infusions for 10 days. Patients were permitted concomitant use of lopinavir–ritonavir, interferons, and corticosteroids. The primary endpoint was time to clinical improvement up to day 28, defined as the time (in days) from randomisation to the point of a decline of two levels on a six-point ordinal scale of clinical status (from 1=discharged to 6=death) or discharged alive from hospital, whichever came first. Primary analysis was done in the intention-to-treat (ITT) population and safety analysis was done in all patients who started their assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04257656. Findings Between Feb 6, 2020, and March 12, 2020, 237 patients were enrolled and randomly assigned to a treatment group (158 to remdesivir and 79 to placebo); one patient in the placebo group who withdrew after randomisation was not included in the ITT population. Remdesivir use was not associated with a difference in time to clinical improvement (hazard ratio 1·23 [95% CI 0·87–1·75]). Although not statistically significant, patients receiving remdesivir had a numerically faster time to clinical improvement than those receiving placebo among patients with symptom duration of 10 days or less (hazard ratio 1·52 [0·95–2·43]). Adverse events were reported in 102 (66%) of 155 remdesivir recipients versus 50 (64%) of 78 placebo recipients. Remdesivir was stopped early because of adverse events in 18 (12%) patients versus four (5%) patients who stopped placebo early. Interpretation In this study of adult patients admitted to hospital for severe COVID-19, remdesivir was not associated with statistically significant clinical benefits. However, the numerical reduction in time to clinical improvement in those treated earlier requires confirmation in larger studies. Funding Chinese Academy of Medical Sciences Emergency Project of COVID-19, National Key Research and Development Program of China, the Beijing Science and Technology Project.
                Bookmark

                Author and article information

                Contributors
                maugeri.norma@hsr.it
                Journal
                J Thromb Haemost
                J Thromb Haemost
                10.1111/(ISSN)1538-7836
                JTH
                Journal of Thrombosis and Haemostasis
                John Wiley and Sons Inc. (Hoboken )
                1538-7933
                1538-7836
                16 November 2021
                16 November 2021
                : 10.1111/jth.15575
                Affiliations
                [ 1 ] Division of Immunology, Transplantation & Infectious Diseases IRCCS San Raffaele Institute Milan Italy
                [ 2 ] Università Vita‐Salute San Raffaele Milan Italy
                [ 3 ] Laboratory of Medical Microbiology and Virology “Vita‐Salute” San Raffaele University Milan Italy
                [ 4 ] Laboratory of Medical Microbiology and Virology IRCCS San Raffaele Institute Milan Italy
                [ 5 ] Cardio‐Thoracic‐Vascular Department IRCCS San Raffaele Institute Milan Italy
                [ 6 ] Molecular Haematology Unit IRCCS San Raffaele Institute Milan Italy
                [ 7 ] Haematology and Bone Marrow Transplantation Unit IRCCS San Raffaele Scientific Institute Milan Italy
                Author notes
                [*] [* ] Correspondence

                Norma Maugeri, Autoimmunity and Vascular Inflammation Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.

                Email maugeri.norma@ 123456hsr.it

                Author information
                https://orcid.org/0000-0003-3931-0412
                Article
                JTH15575
                10.1111/jth.15575
                8646617
                34710269
                aba2b1d3-d83e-44a7-a8eb-bdc37c401e22
                © 2021 International Society on Thrombosis and Haemostasis

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 26 October 2021
                : 16 May 2021
                : 26 October 2021
                Page count
                Figures: 5, Tables: 3, Pages: 15, Words: 9057
                Funding
                Funded by: EHA grant on COVID‐19
                Funded by: Ministero della Salute , doi 10.13039/501100003196;
                Award ID: COVID‐2020‐12371617
                Funded by: COVID‐19 program project grant from the IRCCS San Raffaele Hospital
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.9 mode:remove_FC converted:06.12.2021

                Hematology
                covid‐19,hmgb1,platelets,p‐selectin,sars‐cov‐2
                Hematology
                covid‐19, hmgb1, platelets, p‐selectin, sars‐cov‐2

                Comments

                Comment on this article