11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          We explore hierarchical black hole (BH) mergers in nuclear star clusters (NSCs), globular clusters (GCs) and young star clusters (YSCs), accounting for both original and dynamically assembled binary BHs (BBHs). We find that the median mass of both first- and nth-generation dynamical mergers is larger in GCs and YSCs with respect to NSCs because the lighter BHs are ejected by supernova kicks from the lower mass clusters. Also, first- and nth-generation BH masses are strongly affected by the metallicity of the progenitor stars: the median mass of the primary BH of a nth-generation merger is ∼24–38 M⊙ (∼9–15 M⊙) in metal-poor (metal-rich) NSCs. The maximum BH mass mainly depends on the escape velocity: BHs with mass up to several thousand M⊙ form in NSCs, while YSCs and GCs host BHs with mass up to several hundred M⊙. Furthermore, we calculate the fraction of mergers with at least one component in the pair-instability mass gap (fPI) and in the intermediate-mass BH regime (fIMBH). In the fiducial model for dynamical BBHs with metallicity Z = 0.002, we find fPI ≈ 0.05, 0.02 and 0.007 (fIMBH ≈ 0.01, 0.002 and 0.001) in NSCs, GCs and YSCs, respectively. Both fPI and fIMBH drop by at least one order of magnitude at solar metallicity. Finally, we investigate the formation of GW190521 by assuming that it is either a nearly equal-mass BBH or an intermediate-mass ratio inspiral.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the variation of the initial mass function

              P. Kroupa (2001)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                July 2021
                May 26 2021
                July 2021
                May 26 2021
                May 10 2021
                : 505
                : 1
                : 339-358
                Affiliations
                [1 ]Physics and Astronomy Department Galileo Galilei, University of Padova, Vicolo dell’Osservatorio 3, I–35122 Padova, Italy
                [2 ]INFN – Padova, Via Marzolo 8, I–35131 Padova, Italy
                [3 ]INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I–35122, Padova, Italy
                [4 ]School of Physics and Astronomy, Institute for Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, UK
                [5 ]Astronomisches Rechen-Institut, Zentrüm für Astronomie, Universität Heidelberg, Mönchofstr. 12-14, D-69117 Heidelberg, Germany
                [6 ]Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck, Austria
                Article
                10.1093/mnras/stab1334
                ab4031dd-d140-450c-afbf-7bada9c5ccd7
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article