25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp 2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Boron nitride substrates for high-quality graphene electronics

          Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics far inferior to the expected intrinsic properties of graphene[1-12]. While suspending graphene above the substrate yields substantial improvement in device quality[13,14], this geometry imposes severe limitations on device architecture and functionality. Realization of suspended-like sample quality in a substrate supported geometry is essential to the future progress of graphene technology. In this Letter, we report the fabrication and characterization of high quality exfoliated mono- and bilayer graphene (MLG and BLG) devices on single crystal hexagonal boron nitride (h-BN) substrates, by a mechanical transfer process. Variable-temperature magnetotransport measurements demonstrate that graphene devices on h-BN exhibit enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping in comparison with SiO2-supported devices. The ability to assemble crystalline layered materials in a controlled way sets the stage for new advancements in graphene electronics and enables realization of more complex graphene heterostructres.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atomic layers of hybridized boron nitride and graphene domains.

            Two-dimensional materials, such as graphene and monolayer hexagonal BN (h-BN), are attractive for demonstrating fundamental physics in materials and potential applications in next-generation electronics. Atomic sheets containing hybridized bonds involving elements B, N and C over wide compositional ranges could result in new materials with properties complementary to those of graphene and h-BN, enabling a rich variety of electronic structures, properties and applications. Here we report the synthesis and characterization of large-area atomic layers of h-BNC material, consisting of hybridized, randomly distributed domains of h-BN and C phases with compositions ranging from pure BN to pure graphene. Our studies reveal that their structural features and bandgap are distinct from those of graphene, doped graphene and h-BN. This new form of hybrid h-BNC material enables the development of bandgap-engineered applications in electronics and optics and properties that are distinct from those of graphene and h-BN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Raman spectroscopy as a versatile tool for studying the properties of graphene

              Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all \(sp^2\)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                29 September 2016
                2016
                : 6
                : 34474
                Affiliations
                [1 ]School of Physics and Astronomy, University of Nottingham , Nottingham NG7 2RD, UK
                [2 ]School of Chemistry, University of Nottingham , Nottingham NG7 2RD, UK
                [3 ]Nottingham Nanoscale and Microscale Research Centre, University of Nottingham , Nottingham NG7 2RD, UK
                Author notes
                [*]

                Present address: School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.

                Article
                srep34474
                10.1038/srep34474
                5041098
                27681943
                ab0e0576-9356-4099-a57d-32b91390a323
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 May 2016
                : 14 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article